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We have considered a model which is the relativistic generalization of the Ruijgrok-Van Hove
Lee model, and which is free of the difficulties of that model. 

l. For the study of the general problems of quan
tum field theory it is useful to have at one's dis
posal a relativistically-invariant model which can 
be solved explicitly. We consider one such model 
in the present paper. It will be used in the follow
ing to analyze the difficulties of a field theory with 
a point interaction, the singularities of a non-local 
theory, and so on. 

We use as the basis from which to construct 
such a model the static Ruijgrok-Van Hove model (iJ 

(in short: RVH) which is a generalization of the 
usual Lee model. As these two, the model proposed 
here describes the scalar interaction between 
scalar mesons ( e ) and a nucleon field ( V, N). The 
interaction Hamiltonian 

H' =~~~~(cr+cp+ +cr_cp_)')J,, 

" 
(the meaning of the index u is explained below) 
corresponds to the processes V ~ N + e and 
N ~ V + e with bare coupling constants gv and 
gN, respectively. In (1) 

')J=('~'v), a+={\0 gN) 
'i'N. gv ll ' 

(1) 

and cp ± is the creation and annihilation part of the 
field cp. 

2. To construct a relativistic theory we must 
give up the static character of the nucleon field.* 
We shall describe the latter by the Lagrangian 
(see [2J) 

with the momentum characteristic for its state.* 
The magnitude of u is not changed during the in
teraction process as the Hamiltonian (1) is diag
onal. 

The presence of a separate vector u enables 
us to consider the quantity 1/Ju as a two-component 
spinor without coming into conflict with relativity 
or with the parity-conservation law. Indeed, a 
Lorentz transformation corresponding to a veloc
ity ov gives 

'IJ;, = (1 + ovl) '!Ju, 

where the vector 1 ~ [ax u ] is a polar vector. We 
remind ourselves of the fact that in the usual the
ory 1 is proportional to the axial spin vector a 
because there are not two vectors, and that we 
have thus a four-component spinor. 

We make two remarks concerning the nucleon 
dispersion law 

E =(up+ M)fuo- (3) 

First of all, it follows from (3) that sometimes (for 
instance, when two nucleons with the same u are 
scattered) the energy and momentum conser
vation laws are not independent. It is thus neces
sary to check specially whether the vacuum and 
single-particle states are stable. From this point 
of view it is essential that there is no pair creation 
in our model and that the processes where a e par
ticle is emitted by a free nucleon are also forbidden. 
Indeed, the energy conservation law gives for those 

Lo = ~\iJu (i (u'V)- M) 'llu· (2) processes 

" 
Here and henceforth the summation is over all val
ues of the four-vector u which satisfy the condition 
u~- u2 = 1, u0 > 0. The vector u which has the 
meaning of the four-velocity of a particle is not 
at all connected with its momentum and is together 

*The 8-N scattering cross section becomes then different 
from zero; it vanishes in the RVH model because recoil is 
neglected. 

(4') 

where .6.p is the change in the nucleon momentum. 
The momentum conservation law .6.p = k, or 

*The model considered here differs from the Bloch-Nord
sieck model' in a number of important points; in particular, 
there is no connection between u and p and the problem is 
completely isotropic. 
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(4") 

is easily seen to be incompatible with ( 4'). 
It is moreover clear from (3) that the energy of 

a state is not always positive and can change its 
sign (when p2 < 0) when the frame of reference 
changes. On this point there is an essential differ
ence with the usual model where always p2 > 0 and 
where the sign of the energy is invariant. The nat
ural relativistic generalization of the sign of the 
energy in the model considered is the sign of the 
quantity (up) which in the rest frame of the particle 
(when p = 0) is the same as the sign of the energy 
and which is always positive. It is essential in this 
connection that just the quantity (up) and not p2 
determines the characteristics of the excited 
single-nucleon states (see Sec. 4 below). 

To conclude this section we establish the con
nection between our model and the RVH and Lee 
models. For gN = 0 we get the relativistic gener
alization of the Lee model. If we retain in the sums 
in (1) and (2) only the one term with u = 0, u0 = 1, 
we get the RVH model. Finally, if we put gN = 0, 
we come back to the usual Lee model. 

3. We turn now to a study of the proposed model. 
We start with the charge normalization. We note 
that it is performed exactly as in the RVH model [1J 

and is reduced to finding the exact Schrodinger 
wave function for the single-nucleon state. The 
only difference consists in that it is necessary to 
replace', w312 by w 112( u0w - u • k) in the corre~ 
sponding integrals. We give here the final expres
sion for the renormalized charges g0y and g0N: 

gov = go.v = (gvgN)"'. (5) 

The renormalized charge is thus different from 
zero in the model considered, as in the RVH model. 
The vanishing of the charge in the Lee model-both 
the usual and the relativistic model-is simply con
nected with the fact that the process N ~ v + e is 
forbidden: we see from (5) that g0y tends to zero 
as gN = 0. This fact indicates once more that the 
situation in the Lee model is by no means indica
tive of similar difficulties in real field theories 
where there is complete symmetry between the 
emission and absorption of particles.* 

4. We turn now to a study of the structure of 
the renormalized theory. Because of (5) we can 
at once put gy = gN = g, cry= uN = gr1• We shall 
start from the functional equation for the fermion 
Green's function [4J 

[ i (uV) - M + g't1 <l> (x) I Guu' (x, x' I <p) = o (x - x') Ouu'• 

<l> (x) = <p (x) - i ~ d£11 (x- £) 6qJ
6Csl . 

--:-=--~-*A subsequent paper' is devoted to this kind of problems. 

The boson Green's function is in our model the 
same as the free function .6. ( x- x' ) . 

One solves the equation given here easily as the 
dependence on the external field <P is at once split 
off as an exponential 

exp {g1:1 ~ d£<p (£) !K (x'- £) - K (x- £)1} , 

K (x) = (2n)-4 ~ d4k !(u k) + ie)-1 exp(- ikx). (6) 

Performing in the usual way the mass renormal-
ization and splitting off the Z factor, we get 

co 

Gc (p) = - i (2n)-~ ~ d£ exp {i£ ((up) - Mo) + x(£)}, 

00 

(7) 

' 
This expression has no ghost singularities whatever. 

The vertex part is immediately obtained from the 
relation 

gr (x, x', £) = (oG (x, x')/o<p (£))cp=o· 

Using (6) we get the generalized Ward equation 

(u!?) r (p, k) = 1:1 {G-1 (p)- G-1 (p- k)}, (8) 

through which the vertex part is completely deter
mined. Using (7) and (8) we can also verify that the 
equality go = g holds and also find the asymptotic 
behavior 

where a= g2/4n2, !; =max (p, k). The decrease 
in the vertex part is in complete agreement with the 
well-known Lehmann -Symanzik- Zimmermann 
theorem. 

5. The model constructed here satisfies thus 
the general requirements of field theory and the 
simultaneity condition.* One sees easily that the 
same properties are also possessed by a some
what modified model with a complex charge 

All relations in the foregoing, except (5), remain 
valid if we perform the substitution 

g2__,1gi2· (9) 

The charge renormalization is now of the form 

go= g, (g*)o = g*. 

To verify the validity of what we just stated, it is 
sufficient to note that the contribution from every 
virtual line is, indeed, connected with the substi
tution (9). 

*We note that the unitarity of the theory follows immedi
ately from the Hermiticity of (1). 
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