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The role of a nonlinear effect associated with the influence of the magnetic field of transverse 
waves in a plasma is discussed. It is shown that the waves are modulated if the frequency dif
ference of two transverse waves is equal to the plasma frequen<I!Y (resonance interaction). In 
a nonresonance interaction only a weak frequency shift occurs. The adiabatic invariants for 
the problem are found. 

IN the usual analysis of small oscillations of a 
plasma the effect of the self magnetic field on the 
plasma is neglected because this effect is of order 
nv/c (n is the refractive index and v is some 
characteristic velocity) as compared with the ef
fect of the electric field. It is of interest, how
ever, to examine this effect because it can lead 
to an additional interaction between the waves.* 
It is clear that this effect will be of greatest im
portance in a magnetoactive plasma when the re
fractive index n becomes large. 

We shall limit ourselves to the case of wave 
propagation along a uniform magnetic field H 
( 0, 0, H). In this case the transverse waves in
teract via the excitation and absorption of longi
tudinal oscillations. 

1. BASIC EQUATIONS 

The equations that describe the plasma (hydro
dynamic approximation) and the electromagnetic 
field are 

du!dt +eE!m =- (e/2mc) (viW!az + v'aA/az), (1) 

aE!az + 4rtenop = 0, dp/dt + (1 + p) au!az = 0, (2) 

A = Ax + iAy, v = Vx +ivy, where Vx and vy are 
the transverse electron velocities. The electrons 
are assumed to be at zero temperature and dissi
pative processe$ are neglected. 

Hereinafter we assume that no longitudinal self 
oscillations are excited. Taking the right-hand 
side of (1) to besmall, we neglect quadratic terms 
in u and p. * Then, Eqs. (1) - (4) can be written in 
dimensionless form 

~ J_ ~-u -_-- 0 d ( A) . (6) 
i}f I i}z ' dt V- = IWHV, 

Here, time, length, and longitudinal velocity are ex
pressed in units of 1/w0 = (m/4ne2u0 )11 2, c/w0, and 
c respectively. The unit of vector potential is some 
characteristic irtitial amplitude A0 so that the di
mensionless qmintity A is of order unity. The 
transverse velocity is measured in units of v0 

= eA0/mc; E = I v0 I c..f2 is a small parameter 
and wH = eH/mcw0 is the dimensionless Larmor 
frequency. 

d (' e 4) . cH 
-~ v --' =~ l- v 
at c . me ' (3) 2. APPROXIMATE SOLUTION 

(4) 

Here d/dt = 8/Bt + u8/8t; u and E are the elec
tron velocity and the electric field along the z axis, 
and p = (n- n0)/n0 is the relative variation in elec
tron· density. The ions are fixed and characterized 
by a density n0• 

The transverse electromagnetic field is de
scribed by the vector potential A (Ax, Ay, 0) and 

*Wave interactions due to dissipation processes have been 
investigated in detail in a number of papers (cf. the review by 
Ginzburg and Gurevich'). 

We seek an approximate solution of Eqs. (5)
(7) in the form of a superposition of plane waves 
with amplitudes lthat vary slowly in time: 

A (z, t) = ~ A, (t) /""', 

p (z, t) = z a<ow' (t) ei(<cw-'fw•l + c.c. 
C•)>W~ 

(8) 

*The interaction' of longitudinal oscillations in a plasma 
has been investigated by Sturrock. 2 

' 
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where 

\Pw = wt + kwz, kw = wnw and n~ = 1- 1/w (w- wH) 

is the refractive index, which is determined from 
the solution of the linearized problem. 

In (8) we have neglected combination waves 
since the amplitudes of these waves are propor
tional to a power of the small parameter. By 
slowly varying amplitudes here we mean that 
Aw « wAw, etc ( Aw is also proportional to a 
power of E). The quantity Bw is a correction 
( Bw « Aw) that takes account of the deviation of 
v from the solution of the corresponding linear
ized problem. It is also assumed that any fre
quency of interest is not too close to wH. 

Substituting Eq. {8) in Eqs. {5)- {7) and equat
ing coefficients for the same phase we obtain a 
system of equations for the amplitudes: 

2i (w- m') aww' + [1 - (w- w')2 ] cxww'= - e2Aww'AwA:·, 
{9) 

(10) 

where 

UJH 
•t (m) = 2m + . )" · ' (UJ-(J)Ii 

Equations (9) - (10) have the following integrals: 

In the summation in the last expression only the 
resonance and (near-resonance) terms aww' are 
important; these terms satisfy the condition 

(w- w') 2 = 1. (13) 

The resonance terms can be of order E; far from 
resonance aww' is smaller than E 2• It follows 
from (12) that in general when different waves in
teract the energy of the high-frequency waves is 
reduced while the energy of the low-frequency 
waves is increased. 

Summing over w in (12) we find that the follow
ing quantity is conserved: 

~lt(w)'Aw\ 2 =const. (14) 

The integrals in (12) and (14) represent adiabatic 
invariants of the problem being considered. The 
quantity J.t(w)IAw l2/81r is the energy density of 

the plane waves divided by the frequency. In a 
dispersive medium this energy density is f3J 

w . A " ~- , , J ( ., )] -----' - _n- _, - uJ/l" • 
Hn "~ (J) ' dw w 

(15) 

The quantity in the summation sign in (12) is pro
portional to the energy density of the longitudinal 
oscillations interacting with a given wave, divided 
by the frequency. 

We note that (14) may be given the following 
quantum-mechanical interpretation. If we intro
duce the notion of transverse quasi particles (A) 
and longitudinal quasi-particles (a), then the 
Hamiltonian of the interaction between them is 
cubic in the amplitude (quadratic with respect to 
A). Thus the meaning of (14) is that the number 
of transverse quasi -particles is conserved.* 

Further investigation of Eqs. (9)- (10) is dif
ficult for the general case. For this reason we 
make separate analyses of the resonance interac
tion of two waves and the nonresonance interaction 
(in which case the quantity I w - w' I does not ap
proach unity at any frequency). 

In the nonresonance case we can omit a in (9) 
and the solution of (9) - (10) can be easily found in 
the form 

A., (t) -= A"' (0) e1-""'1 , 

where 

The applicability condition for the last relation 
( ~w « w) is the inequality E ( wH- w) -! « 1. 

3. INTERACTION OF TWO WAVES 

(16) 

We now consider the case of a resonance inter
action between two extraordinary waves ( w1 - w2 

= 1) assuming that w1, w2 < WH and WH > 1. For 
definiteness we denote quantities pertaining to the 
high-frequency wave by the subscript "1." We 
also introduce the notation 

If it is assumed that there are no longitudinal os
cillations at the initial time [ t ( 0) = s ( 0) = 0 ] , 
then (12) can be written in the form 

(17) 

so that 0 :s s :s 1. Using (9) - (10) and (17) we ob
tain the following differential equation for l;: 

*The author is indebted to V. L. Pokrovskii for these ob
servations. 
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where 

Integrating once in (18) and introducing the ini
tial conditions we have 

(d~!d-t) 2 + ~2 (/2o - ho} + /10~3 - ho = 0 (19) 

The cubic term in the left side of (19) has the 
following roots 

Consequently, t varies periodically from 0 to 1 
with period 2r0, where 

1 

~ d~ 
't - (20) 

0 -- V (; ( 1 - /;) Uzo -:-- hos) • 
0 -

This same period characterizes the oscillations of 
the energy in wave 1 ( E1) between zero and the ini
tial value and the oscillations of the energy of wave 
2 between E20 and E 20 + w2E 10 /w 1• When the fre
quency of the first wave is close to WH ( WH- w1 

« 1) its energy increases sharply, I10 » I20 and 
the modulation period is determined approximately 
by relation 

However, the applicability condition for Eqs. (9)
(10) imposes definite limitations on how small 
w H- w can be. Specifically, (11) and the require
ment Bw « Aw mean that the inequality 
E ( w H- w ) - 3/ 2 « 1 must be satisfied. 

Using (9) we can easily estimate the width of 
the resonance interaction region. The ''de tuning'' 
frequency is given by the relation 

11 - w1 + wd ;:(: e. 

The quadratic terms in u and p are of order 
e: 4 far from resonance; at resonance these terms 
are of order e: 2 and the nonlinear inertia term 
u au/ az can be of the same order of magnitude as 
the driving force e: 2 (v 8A*/8z + c.c. ). It is easily 
shown, however, that this term does not contain 
harmonics that interact. Thus it is valid to neg
lect the quadratic terms in u and p. 

All the foregoing considerations are obviously 
valid to an accuracy of order E for the resonance 
interaction and e: 2 for the nonresonance case. 
There is no qualitative change in the results if the 
electron temperature is nonzero. In place of (13) 
we obtain a resonance condition of the form 

( <o 1 - w2) 2 - (c,/c)2 (k1 - k2) 2 = 1, 

where cs is the electron thermal velocity. 
If we take wH = 0 in the above formulas the in

teraction of circularly polarized waves in an iso
tropic plasma can be treated. 

In conclusion we wish to thank V. L. Pokrovskii 
for valuable discussions and comments. 
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