ELASTIC SCATTERING OF 10-15 Mev ALPHA PARTICLES BY GOLD AND ALUMINUM

M. P. KONSTANTINOV, E. V. MYAKININ, A. M. ROMANOV, and T. V. TSAREVA

Leningrad Physico-Technical Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor February 4, 1961

J. Exptl. Theoret. Phys. (U.S.S.R.) 41, 49-51 (July, 1961)

The angular distribution of 10 - 15 MeV α particles elastically scattered by gold and aluminum has been studied. The differential cross-sections for scattering of α particles by gold obey the Rutherford formula for angles between 10 and 140°. The angular distribution of α particles elastically scattered by aluminum is characterized by the presence of maxima and minima.

A study of the departures of the experimental cross sections for elastic scattering of α particles from the cross sections calculated by the Rutherford formula, makes it possible to obtain information on the radius and potential of the nuclear interaction of α particles. For this purpose the angular distributions of α particles with energies 20 - 43 MeV, scattered elastically by light and heavy nuclei, have been studied in detail.^[1-6] The angular distribution of α particles with energies 8 - 20 MeV, elastically scattered by nuclei, has been insufficiently studied. In the present work measurements have been carried out on the angular distribution of 10 - 15 MeV α particles scattered by gold and aluminum nuclei.

The experiments were made with the cyclotron of the Physico-Technical Institute of the Academy of Sciences. The target -a thin gold or aluminum foil - was placed in the center of the 500 mm diameter brass chamber. Ya-2 photographic plates, with emulsion $100 \,\mu$ thick, were placed around the target at equal distances and at equal angles of inclination to the axis of the collimated beams of scattered α particles. The windows of the casettes containing the plates were covered with $3.9\,\mu$ thick aluminum foil. Irradiation of the plates was carried out in several doses, and the ranges of angles 10 - 30, 30 - 50, 50 - 90 and $90 - 140^{\circ}$ were covered consecutively. The overlap of angles in the ranges chosen made it possible to have "coupling plates," which provided a check on the readings of the monitor (Faraday cup with integrating circuit). The α -particle tracks with fixed (corresponding to calculation) values of range were counted with an MBI-2 microscope.

The energy of the primary α particle beam was determined from the range-energy curves in aluminum and in the photographic emulsion, for α particles scattered by gold, and for the protons from the reaction $Al^{27}(\alpha, p) Si^{30}$. In the latter case the Q values were used, determined by the magnetic analysis method^[7] for transitions to the ground state and to the first, second and third excited states of Si³⁰.

The experimental scattering cross section in the center-of-mass system (for an angle $\Theta_{c.m.}$) was determined by using the formula

$$\sigma_{\text{expt}} = \frac{N_{\tau}(\theta_{1\mathbf{a}\mathbf{b}})}{n_{x}n_{n}G} \sin \theta_{1\mathbf{a}\mathbf{b}} \frac{\sin^{2}\theta_{1\mathbf{a}\mathbf{b}}}{\sin^{2}\theta_{...m}} \cos (\theta_{1\mathbf{a}\mathbf{b}} - \theta_{...m}),$$

where $N_T(\Theta_{lab})$ is the number of α -particle tracks traversing a fixed area of plate examined at a given angle Θ_{lab} (laboratory system), n_{α} is the number of α particles falling on the target, determined from the charge in the Faraday cup, n_N is the number of nuclei referred to 1 cm² of target, and G is a coefficient determined by the geometrical conditions of the experiment.

The angular distribution of 10.4, 13.6, and 14.7 Mev α particles, elastically scattered by a 0.25 mg/cm² thick gold foil was studied by the method described. It was established that the differential cross section for scattering of α particles by gold satisfies the Rutherford formula in the range of angles 10 - 140°. The result holds generally for all α -particle energies studied here. The absolute values of the cross sections were determined with an error not exceeding 15%.

The elastic scattering of α particles by aluminum was studied for energies of 10.4 and 13.6 Mev in the primary beam (corresponding to α -particle energies in the c.m. system of 9.05 and 11.9 Mev). The target was 0.13 mg/cm² thick aluminum foil.

The points in the figure represent the ratio of the experimental cross sections for elastic scattering to the cross sections calculated by the

Angular distribution of α particles, elastically scattered by aluminum: $a - for E_{\alpha c.m.} = 11.9 Mev$, $b - for E_{\alpha c.m.} = 9.05$ Mev.

Rutherford formula. Apart from the statistical and geometrical errors of the experiment, errors related to incomplete separation of the groups of elastically and inelastically scattered
$$\alpha$$
 particles are also taken into account. For scattering at small angles the geometrical errors are dominant. while for scattering at large angles ($\Theta_{c.m.} > 90^\circ$) the errors connected with separation of the inelastically scattered α particles are dominant.

r

e

a

 \mathbf{S}

It follows from the figure that the ratio σ_{expt} / σ_{Ruth} is less than unity, and for $\Theta_{\text{c.m.}} > 30^\circ$ a non-monotonic variation of angular distribution of the α particles is observed. Since the investigation was carried out with an angular interval of 5°, some details of the distribution could have passed unnoticed.

The results obtained are in qualitative agreement with the data on the distribution of elastically scattered α particles of energy 20-43 $Mev^{[4-6]}$ by aluminum. The difference consists in the maxima of this distribution being less pronounced for energies 10 - 14 Mev. If we proceed from the analogy between elastic scattering and the diffraction of light,^[4] then we should expect the relative position of the maxima in the distribution of elastically scattered α particles to obey the relation

$$k R\Delta\left(\sin\frac{\theta}{2}\right) = \frac{\pi}{2}$$
,

where k is the α -particle wave-vector, R the interaction radius and Θ the scattering angle (c.m. system). For $E_{\alpha c.m.} = 11.9$ Mev the mean distance between the maxima is 0.19 (on a $\sin \Theta/2$ scale). This corresponds to an interaction radius $R = 5.9 \times 10^{-13}$ cm.

¹Kerlee, Blair, and Farwell, Phys. Rev. 107, 1343 (1957).

²Wegner, Igo, and Eisberg, Phys. Rev. 99, 825 (1955).

³ H. E. Gove, Phys. Rev. **99**, 1353 (1955).

⁴P. C. Gugelot and M. Rickey, Phys. Rev. 101, 1613 (1956).

⁵Igo, Wegner, and Eisberg, Phys. Rev. 101, 1508 (1956).

⁶E. Bleuler and D. J. Tendam, Phys. Rev. 99, 1605 (1955).

⁷Barros, Forsyth, Jaffe, and Taylor, Proc. Phys. Soc. 73, 793 (1959).

Translated by R. Berman 11