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A method is developed which makes it possible to extend the range of knowledge of the spec­
tral functions and absorption parts, by a series of successive steps, from a knowledge of the 
absorption part of the scattering amplitudes specified in the physical region. By means of 
this method, the NN scattering amplitude can be expressed in terms of the 1r1r and 1rN scat­
tering amplitudes, specified only in the physical regions. 

ALTHOUGH representations of the Mandelstam 
type for the scattering amplitude have not been 
proved, it is quite probable that they exist. These 
representations, together with the conditions of 
unitarity in the two-particle representation, are 
employed by us in the present work as the basis 
for an approximate calculation of the amplitude 
of nucleon-nucleon scattering. 

In the two-particle approximation to the unitar­
ity condition, the amplitude of NN scattering is 
connected with the amplitudes of 1r1r and 1rN scat­
tering. The purpose of our research is the devel­
opment of a semiphenomenological method of con­
structing the NN scattering amplitude from the 
values of the 1r1r and 1rN amplitudes in the phys­
ical regions. 

The work consists of two parts. In Part I a 
summary is given of Mandelstam's equations1•2 

for all possible channels of 1r1r, 1rN and NN scat­
tering. For simplicity, the spin-charge variables 
are neglected and subtraction is not considered. 

In Part II it is shown how one can systematically 
find the spectral functions of the Mandelstam rep­
resentation in ever wider regions according to the 
absorption parts of the amplitude given in the phys­
ical regions. It is very important that these re­
gions grow quickly and that the spectral functions 
can be computed exactly in that part of them in 
which it is not necessary to take into account the 
graphs of perturbation theory corresponding to 
inelastic processes over two channels. 
It is further shown how one can express the ampli­
tude of NN scattering in terms of the absorption 
parts of the n and 1rN scattering amplitudes in 
the physical regions, and in terms of the absorp­
tion part of the amplitude of nucleon-antinucleon 

annihilation into two 1r mesons. The latter can 
be expressed in terms of the first two absorption 
parts. 3•4 

I. THE MANDELSTAM EQUATIONS FOR THE 
SPECTRAL FUNCTIONS 

1. Scattering of Pions on Pions 

Let us consider the reactions 

rr(ql) +rr(q2) -rr(qa) +rr(q4), 

:It (qJ) +:It(- q4) ->:It (qa) +:It(- q2), 

:It (qL) +:It(- qa) ->:It(- q2) +:It (q4) 

(A. I) 

(A. II) 

(A.III) 

[ 1r ( q) denotes a 1r meson with four-dimensional 
momentum q ] and introduce the relativistically 
invariant quantities [the squares of the energies 
in the center of mass system (c.m.s.) for these 
three reactions ] 

which obviously satisfies the relation 

(2) 

where J.J. -rest mass of the 1r meson. 
We write down the double spectral representa­

tion for the amplitude A of the reactions consid­
ered here: 

(3) 

where the real spectral functions Aik ( x, y) ( 1 :::: i 
< k :::: 3) satisfy the relations* 

*Actually, and this will be proved in Sec. 4, the functions 
Aik (x, y) are equal to zero in a much broader region than 
shown in the limits of integration of (3). 
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A12 (x, y) = A1s (x, y) = A2s (x, y); (4) 

Aa,(x,y)=Atk(y,x) (l<i<k<3). (5) 

Furthermore, let us introduce the absorption parts 
of the amplitude 

) _ J__ ~ d , A12 (a" a~) ..L ....!._ ~· d/ At3 (a" a~) A1 (crt, 0'3 - 0'2 , , "s , ,(6) 
ll a - Gz ll a - Cia 

' ' 
1 ·~ , Au ( <, az) 1 ~· , A2a ( c;, c;) (7) A2 (cr2 , D's) = - do1 ---, -- + - dos -,--- , 
ll a1 -Cit Jt Cis - Cia 

) _ 1~ • d , Ata (c;:, aa) , 1 \ d , A2a (c;~, Cia) (8) 
A a (crs, ()"1 ·- n 01 ' T -n ) 02 ' , 

a1 - Vt U2 -- 0:2 

where the integration in the expressions for 
Ai ( x, y) ( i = 1, 2, 3) is carried out for fixed x 
over all real values of the variable of integration, 
at which the corresponding spectral function dif­
fers from zero. 

It is clear that 

At(x, y) = 0, if x < 4tt2, 

A1 (x, y) = A2 (x, y) = As (x, y), 

At(x, y) = At(x, 4tt2 - x-y). 

(9) 

(10) 

(11) 

For derivation of the set of Mandelstam equa­
tions, let us write the unitarity condition in the 
approximation of elastic scattering, for example, 
for the reaction (A.III):* 

1 (' <ixd A~ (x, 1]) At (y, lJ) 
Aii' (s, TJ) = 4ll2lJ•;, (lJ/4 _ f1•)';, .\_ Y [(£ _ st) (~ _ £zll';,l 

(E,<~) (12) 

, 2xy 2 
St,2 = S!,2 (TJ; X, y) = X+ y T lJ- 4}l2 ± 1')- 4ri' 

X [x2 + (TJ- 4tt2) x]'l• [y2 + (TJ- 4ft2) y]'l•, (13) 

and integration is carried out over all real x and 
y for which the absorption parts differ from zero. 

The amplitude Aa> (a1, a3 ) represents the part 
of A13 ( a1, as) in which the perturbation-theory 
graphs corresponding to elastic scattering with 
energy a3 and inelastic scattering with energy a1 
make a contribution, so that we have 

Ali1(crl, D's) = 0, if 0'1 < 16tt2 or O"s < 4tt2 • 

Introducing the notation 

Aii>(crl, D's) = X. (a I> as), 

we have, successively, 

(14) 

(15) 

A1s (cr1. D's) =X. (a1 , as) +X. (as. 0'1) + XA(al, cra). (16) 

where x (a3, a1) is the part of A1s (a1, a3) in which 
the perturbation-theory graphs corresponding to 

*In view of the symmetry of the reactions of (A.I), (A. II), 
and (A.III) one need not consider the unitarity conditions for 
the first two reactions. 

elastic scattering with energy a 1, and inelastic 
scattering with energy a3 make a contribution, 
while XA (a1, a3) [XA (a1, aa) = XA (a3, a1)] is 
that part of A13 (a 1, a3 ) in which the perturbation­
theory graphs make a contribution, corresponding 
to inelastic scattering both with energy a 1 and 
with energy as, so that, finally, 

XA (a I> D's) = 0, if 0"1 < 16tt2 or D's < 16tt2. (17) 

Then substituting (16) in (6) and taking (4) into 
account, we get 

A1 (al, as) = ~ ~ dx !x. (x, cr1) 

+X. (a~> x) I (x ~ c;2 + x ~ c;J + Aru (a1 , as). (18) 

where 

Equations (12), (15), (18), and (19) represent the 
desired set of Maxwell's equations in the case of 
the scattering of 1r mesons on 1r mesons. 

2. Scattering of Pions on Nucleons 

Now consider the reactions 

n (qt) + N (PI) -> n (q2) + N (p2). 

n (- q2) + N (pl) -> n (- ql) + N (p2). 

(B.I) 

(B.II) 

(B.III) 

[ N ( p) and N ( p' ) denote respectively a nucleon 
with four-dimensional momentum p and an anti­
nucleon with four-dimensional momentum p' ] and 
introduce the relativistically invariant quantities 
(the squares of the energies in the c.m.s. for these 
three reactions ) 

(20) 

which obviously satisfy the relation 

s + s + u = 2{m2 + tt2), (21) 

where m -rest mass of the nucleon. 
We write down the double spectral representa­

tion for the amplitude B of the reactions consid­
ered here:* 

*Actually, as will be proved in Sec. 5, the functions Bik 

(x, y) are equal to zero over a much wider region. 
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00 00 

B = ---fL + L +--\ ~ ds' ~ di Bt2 (s', s') 
m - s m2- s n (m+p.)' (m+p.)' , (s'- s)(s'- s) 

00 00 

+~ ~ ds' ~ 
(m+p.)' 4p.' 

00 00 

d , "B1a (s', u') u -
(s'-s)(u'-u) 

+~ ~ dS' ~ du' Bza(s', u) , 
(m+p.)' 4p.' (s'- s)(u'- u) 

(22) 

where g is the interaction constant of 1T mesons 
with nucleons, and the real spectral functions 
Bik ( x, y ) ( 1 :s i < k :s 3 ) satisfy the relations 

812 (x, y) = 812 (y, x), 813 (x, y) = 823 (x, y). (23) 

We further introduce the absorption parts of the 
amplitude 

8 ( ) _ 1 \d-, B12 (s, s') + 1 \ d , B13 (s,u') 
1 s, u -it~ s s'- s it.) u u'- u , (24) 

8 (- ) _ 1 \ d , B,2 (s', s) + 1 \ d , 8 23 (s~ u') 
2 s,u -- it j s s'- s it.) ll u'- u ' (25) 

8 3 (u, s) = _!_ \ ds' B1s_{s'• u) + __!_ \ dS' 8 23 (S•, u), 
n~ s-s nJ s'-s 

(26) 

where integration in the expressions for Bi ( x, y) 
( i = 1, 2, 3) is carried out for fixed x over all real 
values of the variable of integration for which the 
corresponding spectral function differs from zero. 

It is clear that 

8; (x, y) = o for x < (m+ 11)2 (i = 1, 2); 

8 3 (x, y) =0, for x < 4!\2 ; (27) 

B 1 (x, y) = 82 (x, y), 

8 3 (x, y) = 83 (x, 2 (m2 + ft 2)- X- y). (28) 

For derivation of the set of Mandelstam equa­
tions, we write the condition for unitarity in the 
approximation of elastic scattering first for the 
reaction (B.I): 

8 (1)( )- 1 { (' d d B;(x, s)Ba(y, s) 
13 S, U -- j X y 

8n2k Vs (u1 <; u) [(u- u1)(u- Uz)J'1• 

\ 'B; (x, u (s, x))B2 (y, u (s, y)) } + .) dxdy ,1 - , 
(u,< u) [(u- u3 )(u -u4)) ' 

(29) 

8 (1) ( -) 1 \ 
12 s, s = - ~r _ ~ _ dxdy 

8n2 k r s (s,< s) 

B; (x, u (s, x}) B3 (y, s) + B2 (x, u(s,x)) B; (y, s) 
X - ,1 (30) 

((s- s1)(s- s2) I ' 

where 
( xy 

uu= U1. 2 s; x, y) = x + Y + 2k2 

± 2~2 (x2 + 4k2 x)''•(y2 + 4k2y)'l•, 

1 
Ua,, = U3,4 (s; x,y) = x + y + 2k2 [xy -(m2 -ft2)l 

(31) 

+(x+y-2a)(s-4k2-2a)± f). (s, x) f). (s, y)], (32) 

- - 1 
Su = s1.2 (s;x,y) = x + y + 'Lk2 (xy+ y (s- 4k2 - 2a) 

± (y2 + 4k2y)'I•J).(s, x)], 

f). (s, x)= [(a - x) 2 -2 (s- 2k2 -2a)(:z- x) 

B2 (s, u) = ng2b (s- m2) + 8 2 (s~ u), 

u (s, s) = 2 (m2 + !t2) - s - s; 
k is connected with s by the relation s 

(33) 

(34) 

(35) 

= [ ( k2 + m 2 ) 112 + ( k2 + 1} ) 112 ]2, and the integration 
is carried out over all real x and y for which the 
corresponding absorption parts are different from 
zero. 

Bg> ( s, u) is the part of B13 ( s, u) in which the 
graphs of perturbation theory corresponding to 
elastic scattering with energy s and inelastic 
scattering with energy u make a contribution, 
so that we have 

8g> (s, u) = 0, if s < (m + tJ.) 2 or u < 16ft2 • (36) 

Bg>( s, s) is the part of B12 ( s, s) in which the 
graphs of perturbation theory corresponding to 
elastic scattering with energy s and inelastic 
scattering with energy s make a contribution, 
so that we have 

ag'{s, s) = 0, if s < (m + ft) 2 or s < (m + 2ft)2 • (37) 

We now write down the unitarity condition in the 
approximation of elastic scattering for the reaction 
(B.III):* 
8(3 ) (s u) ~~ - 1 

13 , , 4n2u'l• (u/4- fl2)'1• 

\ d d B1 (x, u) A1 (y, u) 
X ) X Y 'I ' 

(s,<s) [(s-s1)(s-s2)l' 
(38) 

where 2 
s1.2 = s1.2 (u; x, y) = x + y + u _ 4112 {y (x- m2 + ft2) 

± ((x- m2+ft2)2+ (u- 4ft2)x]'l•[y2+ (u- 4ft2) y]'l•}; 
(39) 
(40) 

and the integration is carried out over all real x 
and y for which the absorption parts differ from 
zero. 

The amplitude of Ba>(s, u) is that part of 
B13 ( s, u) in which the graphs of perturbation 
theory corresponding to elastic scattering with 
energy u and inelastic scattering with energy s 
make a contribution such that 

*In view of the symmetry of the reactions (B.I) and (B.II), 
we need not consider the unitarity condition for the reaction 
(B.II). We shall assume that the unitarity condition for the reac­
tion (B.III) is valid also in the non-physical region of energy 
4p.2 < u <4m2 • 
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Introducing the notation 

BW (s, u) ='PI (s, u), BW (s, s) = 'ljJ2 (s, S), 

Bi;>(s, u) = 'ljJ3 (s, u), 

we obtain 

B1a (s, u) = 'ljl1 (s, u) + 'l'a (s, u) + XB (s, u), 

BJ2(s,-s) ='ljlz(s,s) +'IJ'2(s,s) +YB(s,s). 

(42) 

(43) 

(44) 

Here zp2 (s, s) is the part of B12 ( s, s) in which 
the graphs of perturbation theory corresponding 
to elastic scattering with energy 8 and inelastic 
scattering with energy s make a contribution; 
XB ( s, u) is the part of B13 ( s, u) in which the 
graphs of perturbation theory corresponding to 
inelastic scattering with energy s and with en­
ergy u make a contribution; YB ( s, s) [ YB ( s, s) 
=YB(s,s)] isthepartof B12 (s,s) inwhichthe 
graphs of perturbation theory corresponding to 
inelastic scattering with energy s and with en­
ergy s make a contribution, so that certainly 

X 8 (s, u) = 0, if s < (m + 2r~) 2 or u < 16fL2 , (45) 

Y 8 (s, :;;) = 0, if s < (m + 2fL) 2 or s < (m + 2rt) 2 • (46) 

Finally, substituting (43), (44) in (24), (26) and 
taking (23) into account, we obtain 

B ( ) - 1 ~d' ljl.(s, s')+\jl,(s', s) 
1 s' u - - s --'-"-'-'--:!:--'--:~-'---'-

:n: s'- s 

, .!._ (' d , 1jJ1 (s, u') + \jla (s, u') + 8 uu ( ) (47) 
1 :n: ~ U u'- u 1 s, U ' 

B 3 (u, s) = ~ ~ dx ['ljJ1 (x, u) + 'l'a (x, u) l (x ~ 8 + x ~ s J 
+ B~u (u, s), (48) 

where 

8 uu ( ) = .!._(' d' 2:'B (s,s') +.!._\ d ,XB (s, u') 
1 s, u :n: .) s s'- s :n: J u u'- u ' (49) 

B~u (u, s) = _1_ i dxX8 (x, u) (-1 - + - 1 --) . 
:n:) x-s x-s (50) 

Equations (29), (30), (38), and (47)- (50) are the 
desired set of Mandelstam equations in the case of 
the scattering of 1r mesons on nucleons. 

3. Scattering of Nucleons on Nucleons 

Finally, we shall consider the reactions 

N (n1) + N (p1) __, N (n2) + N (p2), (C.I) 

N (n1) +N (- P2) __, N (- P1) + N (n2), (C.II) 

N (n1) + N (- n2) __, N (- P1) + N (p2) (C.III) 

and introduce the relativistically invariant quanti­
ties (the squares of the energy in the c.m.s. for 
the three reactions ) 

which obviously satisfy the relation 

(52) 

We now write down the double spectral repre­
sentation for the amplitude C of the reactions con­
sidered here:* 

00 00 

g2 g2 1 \ , \ ,. ....L.. 

C = --- + -·- +--, J dw .l dt ' 
fL2- I ~12- I ;n:2 4m' 4P.' 

C12 (w', t') 

(w'-w)(t'-1) 

00 00 

-~ -\ 'i d:;/ \ dt' -...,..c-"Ia::...:('-c-w~· '-,-t'-'--1 ~ 
:t 4~z' Ji'' (w'- w)(t'- I) 

(53) 

where the real spectral functions Cik ( x, y) ( 1 ~ i 
< k ~ 3 ) satisfy the relations 

c12 (x, y) = c13 (x, y), c23 (x, y) = c23 (y, x). (54) 

We introduce the absorption parts of the ampli­
tude 

c (w. t) =..:!..I di' c12 (w, h +..:!..I dt' Cia (w, t') (55) 
1 :n: ~ t' - t :n: .) I' - t ' 

C (t w) = .!._ \ dw' c12 (w'' t) + ..!_I dt' c23 (t, t') (56) 
2 ' :n: j w'- w ' :n: .\ t'- t ' 

C (t w) =..!_I dw' Cu (w', t) + .!.. \' df C2a (i·, t) (57) 
3 ' :n: .) w·- w n .) t'- t ' 

where the integration in the expression for Ci ( x, y) 
( i = 1, 2, 3) is carried out for fixed x over all real 
values of the variable of integration for which the 
corresponding spectral function is different from 
zero. 

It is clear that 
C1 (X, y) = 0, if X< 4m2 ; C; (x, y) = 0, 

or x < 4fL2 (i = 2,3); (58) 

c1 (x, y) = c1 (x, 4m2 - X- y); c2 (x, y) = Ca (x, y). 
(59) 

For derivation of the set of Mandelstam equa­
tions, we write down the unitarity condition initially 
for the reaction (C.I) in the elastic scattering ap­
proximation: 

c<1> (w t) - 1 
13 ' - - 4:n:•w'/, (w/4- m•)'l• 

\ c; (x, w) c. (y, w) 
x .l dxdy ---'''-------,.-.-

<t,<t> ((t- f1)(t- iz)J'I• ' 

/1,2 = /1,2 (w; X, y) = X + Y 

2 + w- 4m• {xy ± (x2 + x (w- 4m2)]'/, 

x [y2 + y (w- 4m2)]'!•}, 

(60) 

(61) 

*In reality, as will be shown in Sec. 6, the functions 
Cik (x, y) (1::; i < k ::; 3) are equal to zero in a wider region 
than shown in (53). 
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(62) 

and the integration is carried out over all real x 
and y for which the absorption parts are different 
from zero. 

cg>(w, t) consists of two components: 

cW (w, t) =A (w, t) + <l>l (w, t)o (63) 

The first component corresponds to the case in 
which both variables of integration are equal to J.l 2• 

It is clear that 

A(w,t) =-(g"/4)w-11•(w/4- m2)-11•[t- t1 (w; [12, f12)]-1t, 

X !t - t2 (w; f1 2, 112) ]-1;. (64) 

for those w and t for which A(w, t) ;e 0.* This 
component of A(w, t) is the part of C13 (w, t) in 
which the graphs of perturbation theory corre­
sponding to elastic scattering with energy w and 
with energy t make a contribution. 

The second component <I> 1 (w, t) is the part of 
c13 (w, t) in which the graphs of perturbation the­
ory corresponding to elastic scattering with energy 
w and inelastic scattering with energy t make a 
contribution, so that we have 

<1>1 (w, t) = 0, if w < 4m2 or t < 9[L2
o (65) 

We write the unitarity condition now for the re­
action (C.ITI) in the approximation of elastic scat­
tering:t 

1 I B~ (x, t) B1 (y, t) 
ci~) (w, t) =- 1f 1f 0\ dxdy 1( ' 

4n2f '(//4-!l-2) '<w:<w) [(w-w1)(w-w,)]' 

where 
W1.2 = w10 2 (t, x, y) = x + y 

2 + t- 4!l' {(x - m2 + f12)(y -m2 + p.2) 

± [(x- m2 + fl-2)2 + x (t- 4fL2)tl•[(y- m2 + p.2)2 

(66) 

(67) 

and the integration is carried out over all real x 
and y for which the absorption parts differ from 
zero. 

The amplitude cg> ( w, t) consists of two com­
ponents: 

cg> (w, t) = A' (w, t) + <1>2 (w, t) 0 (68) ------*The boundary of the region where A (w, t) = 0 will be 
established in Sec. 6, but naturally we have A (w, t) = 0 if 
w <4m2 or t < 4u2• 

tin view of the symmetry of the reactions (C.II) and (C.III), 
we need not consider the unitarity condition for the reaction 
(C.II). We shall assume that the unitarity condition for the reac• 
tion (C.III) is also valid even in the non-physical energy re­
gion 41-'2 < t <4m2• 

The first component corresponds to the case in 
which both variables of integration are equal to m 2. 
It is obvious that 

A' (w,t) =- (g4/4)t-11•(t/4- rt 2)-11•[w- w1(t; m2, m2)]-11' 

x [w-w2(t;m2,m2) J-1;, (69) 

for those w and t for which A' ( w, t) ;e 0. It is 
easy to show, therefore, that 

A' (w, t) =A ((i', t)o (70) 

The second component in (68) is the part of 
c13 (w, t) in which the graphs of perturbation the­
ory corresponding to elastic scattering with en­
ergy t and inelastic scattering with energy w 
make a contribution, such that we have 

<1>2 (w, t) = 0, if w < (2m + fL )2 or t < 4fL2 
0 (71) 

Taking into account Eqs. (54), (63), (66), (68), 
and (70) we have, consequently, 

C13 (w, t) = A (w, t) + <1>1 (w, t) + <l>2 (w, t) + Xc (w, t), 
(72) 

C23 (t, t) =A (t, t) +A (t, t) + <l>2 (i, t) 

+ <l>2(t, t) +Yc(t, t), (73) 

where Xc (w, t) is the part of C13 (w, t) in which 
the graphs of perturbation theory corresponding 
to inelastic scattering with energy w and with en­
ergy t make a contribution, and Y c (t, t) 
[ y c (f, t) = y c ( t, t)] is the part of c23 (t, t) in 
which the graphs of perturbation theory corre­
sponding to inelastic scattering with energy T and 
with energy t make a contribution, so that we cer­
tainly have 

Xc(w, t) = 0, if w <(2m + r~) 2 or t < 9[L 2 , (74) 

Yc(t, t) =0, if' t<9f12 or t<9fL2
0 (75) 

Finally, substituting (72) and (73) in (57), we 
obtain 

C3 (t, w) = C3(t, w) + C~(t, w) + c:u(t, w), (76) 

where 

C~ (t, w) =- dx [<1>2 (x, t) +A (x, t)] -- + --- , 1 ~ ( 1' 1 ) 
n .x-w x- f 

(77) 

Cu (t w) = _!._\ dx [<D1 (x, f) 0 <D2 (t, x) +A (f, x) J 
3 ' n .\ x-w -t- x-t ' 

(78) 

uu - 1 ~ [Xc (x, f) ' y c (x, I) l c3 (t, w) - - dx -- ,- j 0 n x-w x-f _ 
(79) 

Equations (60), (66) and (76)- (79) are the desired 
set of Mandelstam equations in the case of scatter­
ing of nucleons on nucleons. 
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II. METHOD OF SUCCESSIVE EXTENSION OF 
THE RANGE OF KNOWLEDGE OF SPECTRAL 
FUNCTIONS 

4. Scattering of Pions on Pions 

We assume that the partial amplitudes hz( v2) 
are given us for the reactions A.I), so that in its 
physical part 

A1 (a1. a3) = ~ Im ht(v2) Pt (cos x). (80) 
I 

where l is the angular momentum, and v2 and x 
are the square of the momentum and the scatter­
ing angle for this reaction in the c.m.s., connected 
with the variables a1, a2, a3 by the relations 

a 2 = - 2v2 ( I + cos X) . 

a3 = - 2v2 (I -cos x). (81) 

We continue analytically the expression on the 
right side of (80) in cos x for v2 = const, finding 
A1 (a1, a3) in the entire region where 

(82) 

We shall call this region the region of zero approx­
imation of the absorption part. 

It is easy to find where the equations of (82) are 
satisfied. In view of (4), it is sufficient for us to 
establish where A13 ( a1, a3) = 0 or where x ( a3, a1) 
+ x (a1, aa) = 0. But on the basis of (9), (12) and 
(13) it can be established that x ( a3, a1) = 0 if a3 

~ ~ 1 (a1; 4J.L2, 4J.L2 ). Therefore, A13 (a1, a3) = 0 in 
the region where 

<ra < ~1 (al; 4tt2• 4tt2), <r1 < ~1 (era; 4ft2, 4tt2). 

We shall denote the boundary of this region by a1 
= aiO> ( 0"3 ) or 0"3 = aiO> ( a1). 

Knowing the absorption part A1 ( a1, a3) in the 
region of its zero approximation, we can find 
X ( a3, 0"1) by Eq. (12) in the region where a3 ~ ~ 1 
(a1; ai0>(a1), 4J.L2). Consequently, we can find the 
spectral function x ( a3, a1) + x ( a1, a3) in the re­
gion where 

We shall call this region the region of zero approx­
imation of the spectral function A13 (a1, a3), and 
shall denote its boundary by a1 = aP>< a3 ) or 0"3 
= aP>< 0"1) · 

On the basis of (4), we can now find the spectral 
function A12 ( a1, a2) in the region of its zero ap­
proximation. The region of zero approximation of 
the spectral functions A13 (a1, a3) and A12 (a1, a2) 
of course includes within itself the region of zero 
approxi~ation of the absorption part A1 ( a1, a3). 

We shall show how we can now find A1 ( a1, a3) 
in the entire region of zero approximation of the 
spectral functions A13 (a1, a3) and A12 (a1, a2). 
The latter we shall therefore call the region of 
first approximation of the absorption part A1 ( a1, a3). 

With this purpose, we introduce the auxiliary 
function Ai (a1, a3), which will appear on the right 
side of Eq. (6) if we set A1a ( a1, a3) = 0 and 
A12 ( a1, a2) = 0 outside the regions of zero approx­
imation of the spectral functions A13 ( a1, a3) and 
A12 (a1, a2), respectively. We shall consider the 
function Ai (a1, a3 ) to be known. Further, we shall 
consider the function A1 ( a1, a3) - Ai ( a1, a3). For 
a1 = const, this function is already analytic in a3 
in the region of zero approximation of the spectral 
functions A13 (a1, a3) and A12 (a1, a2). Therefore, 
it can be obtained there by means of analytic con­
tinuation in cos x for v2 = const from the region 
of zero approximation of the absorption part 
A1 (a 1, a3). It can then be obtained in the region 
of zero approximation of the spectral functions 
A1a (a1, aa), and A12 (a1, a2) and the absorption 
part A1(a1, a3). 

By extending the region in which the absorption 
part A1 ( a1, a3) is known, we can by Eq. (12) ex­
tend the region in which the spectral functions 
A13 ( a1, a3) and A12 ( a1, a2 ) are known which, in 
turn, makes it possible again to extend the region 
in which the absorption part A1 ( a1, a3) is known. 

It is clear that the spectral function A13 ( a1, a3) 
can be found exactly by such a successive exten­
sion of the region of its knowledge only when 
XA(ai> aa) = 0. 

5. Scattering of Pions on Nucleons 

We shall first assume that the partial ampli­
tudes fz ( k2 ) are known to us for the reaction (B. I), 
so that in its physical region 

(83) 

where l is the angular momentum, and k2 and cp 
are the squares of the momentum and scattering 
angles for this reaction in the c.m.s., connected 
with the variables s and u by the relations 

s = [(k2 +m2)"'+(k2 +tt2)'/,J2, 

u = - 2k2 (I -- cos <p) . (84) 

Second, we shall assume that the analytic con­
tinuations of the partial amplitudes gz ( q2 ) are 
given to us for the reaction (B.lll) when q2 > 0, 
so that we have for q2 > 0 and cos .J R! 0,* 

*It wi11 be established below for what values of cos ~ is (85) 
valid. 
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B3 (u, s) =hIm g1 (q2) P 1 (cos il'), (85) 
l 

where l is the angular momentum and q2 and J. 
are the squares of the momentum of the meson 
and the scattering angle for this reaction in the 
c.m.s., connected with the variables s and u by 
the relations 

s = m2- ~~?- 2q2 + 2q (q2 + f12- m2)'i'cos l't, 

(86) 

By continuing the expression on the right side 
of Eq. (83) analytically in cos cp for k2 = const, 
and the expression on the right side of Eq. (85) in 
cos J. for q2 = const, we find B1 ( s, u) over the 
entire region where 

B1a (s, u) = 0, - * B12 (s, s) = 0 (87) 

and B3 ( u, s) over the entire region where 

B 13 (s, u) = 0, B2a (s, u) == 0. (88) 

We shall call these regions respectively there­
gions of zero approximation of the absorption part 
B1 ( s, u) and of the absorption part B3 ( u, s ) . 

It is easy to find where Eqs. (87) and (88) are 
satisfied. On the basis of (27), (29)- (35), and 
(38) - (40) it can be proved that lfJ1 ( s, u) = 0 if 
u:::; u1 (s; 4M2, 41-'2) [here, as is easy to show, 
u::::u3(s;m2,m2)] lfJ2(s,8)=0 if8::::81(s;m2, 
4M2); 1fJ3 (s, u) = 0 if s :::; s 1 (u; m2, 41-'2). There­
fore, B13 ( s, u) = 0 in the region where 

and B12 (s, u) = 0 in the region where 

The boundaries of these regions will be denoted 
by s = s<0>(u) or u = u< 0>(s) and by 8 = s< 0>(s) 
or s = s<0>(s). 

Knowing the absorption parts B1 ( s, u ), B3 ( u, s ), 
B2 ( 8, u) [the latter by virtue of (28)] in the region 
of their zero approximation, and the absorption part 
A1 (y, u) in the region of its n-th approximation 
(n ~ 0 ), we can by Eqs. (29), (30) and (38) find 
lfJ1 (s, u) in the region where u:::: u1 (s; u< 0>(s), 4M2) 
[here, as is easy to show, u ::s u3 (s; m2, m2) all 
the same]; I/J2 ( s, 8) -in the region where 8 :::; 81 
(s;s<0>(s),41-f.2) and s::::st<s;m2,u<O>(s)), and 
lfJ3 ( s, u) -in the region where s .:::: 's1 ( u; s<O>( u ), 
4M2), and s :::; s 1 (u; m 2, a~n)(u)). Consequently, 
we can find the spectral functions lfJ1 ( s, u) + 1/Ja ( s, u) 
in the region where 

*And only in the part of this region which is symmetric in 
cos cp, if B1(s, u) is analytically continued in the form of an ex­
pansion in Legendre polynomials. 

u '-;;;; u1 (s; u<o> (s), 4[12), s < s1 (u; s<o> (u), 4't2), 

s<s1 (u; m2 , a<n>(u)), 

and the spectral function 
the region where 

- - ( -(0) ( ) 4 2) s < s1 s; s s , f1 , 

I/J2 (s, 8) + I/J2 (s, s) in 

s <;;; s1 (s; m2 , u<o> (s)), 

s < s1 (s; m2 , u<o> (S)). 

We shall call these regions respectively the regions 
of zero approximation of the spectral function 
B13 ( s, u) and the spectral function B12 ( s, 8), an<:!_ 
the boundaries of them we shall denote by s 
= s<1>(u) or u = u<1>(s) and by s =s<1>(s) or 
s = s<1>(8). 

On the basis of (23), we can now find the spectral 
function B23 (8, u) in the region of its zero approxi­
mation. The region of zero approximation of the 
spectral functions B13 (s, u) and B12 (s, 8) naturally 
contain within themselves the region of the zero ap­
proximation of the absorption part B1 ( s, u), while 
the region of zero approximation of the spectral 
functions B13 ( s, u) and B23 (8, u) contain within 
themselves the region of zero approximation of the 
absorption part B3 ( u, s ) . 

Continuing in the same fashion as in the case of 
the scattering of 1r mesons on 1r mesons, we can 
now find B1 ( s, u) throughout the entire region of 
zero approximation of the spectral functions 
B13 ( s, u) and B12( s, 8), and also Ba( u, s) through­
out the entire region of the zero approximation of 
the spectral functions B13( s, u) and B23(s, u ). We 
shall therefore call these latter the regions of first 
approximation of the absorption part B1(s, u) and 
the absorption part B3(u, s ), respectively. 

Extending the region in which the absorption 
parts B1 ( s, u) and B3 ( u, s ) are known, we can, 
by Eqs. (29), (30), and (38), extend the region in 
which the spectral functions B13 ( s, u), B12 ( s, 8) 
and B23(8, u) are known; in turn this makes it 
possible again to extend the region in which the 
absorption parts B1 ( s, u) and B3( u, s) are known. 

It is clear that the spectral functions B13 ( s, u) 
and B12 ( s, 8) can be found exactly in such a step­
wise extension of the region of their knowledge 
only when XB(s, u) = 0 and YB(s, 8) = 0. 

6. Scattering of Nucleons on Nucleons 

Making use of the unitarity condition for the 
reaction (C.III), we shall have for 41J.2 < t < 9M2* 
and cos 1/J R: O:t 

*We again assume the validity of the unitarity condition 
for the reaction (C.III) in the non-physical region. 

tu will be established below for what values of cos .P is 
(89) valid. 
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Ca(t,w)=CW,w)= q ,1 _2}jg1 (q2)j2 P 1 (cos'ljl),(89) 
(q" + J.l") ' l 

where q2 and lf! are the squares of the momentum 
of the meson and the angle of scattering for this 
reaction in the c.m.s., which are connected with 
the variables w and t by the relations 

w =- 2 (q2 +fl-2 - m2) (1 +cos');), t = 4q2 +4f12 • 

(90) 

Analytically continuing the expression on the 
right hand side of Eq. (89) in cos lj! for q2 = const, 
we find C3 ( t, w) = Cf ( t, w) over the entire region 
where 4~-L 2 < t < 9~-L 2 and where 

C1a (w, t) = 0, C23 (t~ t) = 0. (91) 

We shall call this region the region of zero approx­
imation for the absorption part C3(t, w). 

It is easy to establish where the equations of 
(91) are satisfied. On the basis of (58) and (60) -
(63) it can be established that A(w, t) = 0 if t 
:::; t1(w; ~-L 2 , ~L 2 ). Therefore, C13(w, t) = 0 in the 
region where t:::; t1(w; ~L2 , ~-L 2 ), while C23 (t, t) = 0 
in the region in which t :::; t/t; ll2, ll2) and t :::; t1 
(t;j.L2,j.L2). 

Knowing the absorption parts B1(s, t) in there­
gion of its n-th approximation (n ;:::: 0 ), we can find 
<P2(w, t) from the first of Eqs. (66) in the region in 
which w :::;w1(t; s<n>(t), m2). The functions .P2(w,t) 
can thus be assumed to be given in the case of scat­
tering of nucleons on nucleons. But then we can 
find the spectral function C13(w, t) in the region 
where 4~-L 2 < t < 9~-L 2 and w:::; w1(t; s<n>(t), m 2), 
and the spectral function C23(t, t) in the region 
where 4~-L2 < t < 9~-L2 and t:::; w1(t; s<n>(t), m 2). 
These regions, which are identical for sufficiently 
high n with the region 4~-L 2 < t < 9j.L2, we shall call 
the regions of zero approximation of the spectral 
function c 13 ( w, t ) and the spectral function c23 (t, t). 
respectively. These regions of course include the 
region of zero approximation of the absorption 
part C3(t, w ). 

Proceeding as above, we can now find C3( t, w) 
throughout the entire region of the zero approxi­
mation of the spectral functions C13( w, t) and 
C23(t, t). We shall also call the latter the region 
of first approximation of the absorption part 
C3(t,w). 

Knowing the absorption part C3 ( t, w) for suf­
ficiently large n in the region of its first approx­
imation, we can, by Eq. (60), find .P1(w, t) through­
out the entire region where 9j.L2 < t < 16~-L2 . We 
shall call this region the region of first approxi­
mation of the spectral functions C13(w, t) and 
C23(t, t). 

Making use of Eqs. (77) and (78), we can now 
find Cf( t, w) and C~( t, w) in the region of first 
approximation of spectral functions C 13 ( w, t ) and 
C23(t, t). We shall also call the latter the region 
of second approximation of the absorption part 
C3(t,w). 

Extending the region in which the absorption 
part C3(t,w) is known, we can by Eq. (60) extend 
the region in which the spectral functions C13(w, t) 
and C23 ([, t) are known; in turn, this again enables 
us to extend the region in which the absorption part 
C3( t, w) is known. 

It is clear that the spectral functions C13(w, t) 
and C23 (t, t) can be found exactly in such a step­
wise extension of the region of their knowledge only 
when Xc(w, t) = o and Yc(I. t) = o. 

7. Discussion 

By slightly altering the method set forth in 
Sec. 4, we can proceed to construct integral equa­
tions for the amplitudes of the reactions A, B, 
and C in their physical regions. 

Assuming also that the absorption part C1(w, t) 
is known in the physical region of the reaction (C.I), 
and proceeding just as in the case of 1r1r and 1rN 

scattering, we could have successively found the 
values for the absorption parts of the reactions A, 
B, and C over wider and wider regions by means 
of a knowledge of them in the physical regions. In 
this case, we could have completely discarded the 
unknown parts of the spectral functions X and Y, 
restricting ourselves to the problem of determin­
ing that part of the amplitude which does not con­
tain graphs which are inelastic in both channels. 
Then expressing the amplitude in terms of the ab­
sorption part, we could have obtained the integral 
equations for the amplitudes in the physical regions. 

Such equations require simplification for prac­
tical use. In particular, rewriting the equations of 
Mandelstam for a fixed angle of scattering for any 
reaction, and then transforming to the partial am­
plitudes, we can easily obtain an equation similar 
to that given by Cini and Fubini. 5 The series of 
additional terms appearing in this case both on 
the right and the left of the cut make the approxi­
mation of Cini and Fubini doubtful. The obtaining 
of more convincing estimates appears possible to 
us in our approach to the construction of integral 
equations; these estimates are connected with the 
neglect of isolated components. These problems, 
however, go beyond the framework of the present 
paper. 

Keeping in mind the calculation which is now 
under way of a real case in which spin and charge 
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variables are present, we shall make a concluding 
remark relative to the capability of inclusion of 
the phases of nucleon-antinucleon annihilation into 
two 1r mesons. It appears most advantageous to 
us to connect them with the phases of 1r1r and 1rN 
scattering by means of a solution by the method of 
Muskhelishvili6 of an integral equation for the am­
plitude of 1rN scattering for a fixed angle of scat­
tering of the reaction (B.III). Thus one can choose 
the phases of the nucleon-antinucleon annihilation 
into two 1r mesons from the phase of 1r1r scatter­
ing and from the absorption part B1( s, u ). The 
latter can be expressed through the pole term* and 
through the phase shifts of 1r1r and 1rN scattering. 

The authors express their gratitude to Yu. N. 
Novozhilov for valuable discussions and interest 
in the work. 

*Only this pole term was considered by Mandelstam. • 
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