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We consider the reflection and absorption of electromagnetic radiation incident perpendicular 
to a plane surface bounding an electron plasma with relativistic particle-momentum distribu
tion. The surface impedance of the plasma is calculated both for relativistic and nonrelativ
istic temperatures. Specular and diffuse reflection of the electrons from the surface of the 
plasma is considered. 

l. The question of the transverse field in a semi- surface of the plasma, corresponding to the transi-
bounded Maxwellian plasma, and also of the reflec- tion to the limit from the region occupied by the 
tion and absorption of electromagnetic waves by plasma. 
such a plasma, were considered in references 1-3. We shall use instead of the surface impedance 
For the case of a degenerate electron gas in a metal, the effective complex depth of penetration of the 
such a problem was considered in references 4- 7. magnetic field1•3 

In the present communication we show that the 
methods used by Reuter and Sondheimer4 can be 
applied directly to a plasma with relativistic elec
tron distribution. This enables us to consider for 
a high temperature plasma not only the case of 
specular reflection, to which references 1 - 3 were 
confined, but also to the case of diffuse reflection 
of electrons from the surface of the plasma. 

Under the assumption of a plane wave incident 
perpendicular to the surface bounding the plasma, 
we derive here expressions for the surface imped
ance for both relativistic and nonrelativistic elec
tron temperatures. For an ultrarelativistic plasma 
we determine the asymptotic behavior of waves at 
large distances and depths from the surface of the 
plasma. 

2. In order to describe the reflection and ab
sorption of electromagnetic waves by the plasma, 
it is necessary to know the complex coefficient of 
reflection r, which represents the ratio of the 
complex amplitudes of the incident and reflected 
monochromatic waves ("' e-iwt). This coefficient 
can be written in the form 8 

r = (e 14:n:) Z (ro) -1 
(e ( 4n) Z (ro) +1 ' 

(1) 

where the surface impedance Z ( w) is determined 
by the ratio of the electric and magnetic fields on 
the surface of the plasma filling the half-space 
z ~ 0: 

z (ro) = 4n £"(0) = 4niro ~~. (2) 
e By(O) e2 £~(+0) 

Here E~ ( + 0 ) denotes the derivative of the elec
tric field with respect to the coordinate z on the 

c2 
= --,-.-Z(ro). 

'"-rzro 

The ratio of the energy flux reflected from the 
surface of the plasma to the energy flux incident 
on the plasma is equal to I r 12• Therefore the 
energy absorbed by the plasma is characterized 
by the quantity 

(3) 

(4) 

It is clear that to determine this quantity, or in gen
eral to determine the complex reflection coefficient, 
it is necessary to know the impedance. We shall 
therefore derive expressions for the effective depth 
of penetration of the field, which accordil:lg to (3) is 
equivalent to determining the surface impedance. 

3. To describe the electrohs we use the kinetic 
equation 

iJ&f + ~ + E i1fo = _ "f at v ar e ap 'Vu • (5) 

Here f0 is the equilibrium distribution function, 
Of the non -equilibrium addition, v the collision 
frequency, and E the electric field. The assumed 
equilibrium distribution function is9 

N e exp (-elf m2e2 + p2 I xT e) 

f o = 4:n: (me)s (xTe 1 me2) K2 (me2 I xT ,) 
(6) 

where Ne is the number of electrons per unit vol
ume and K2 is the MacDonald function. 

Assuming the field to be incident perpendicular 
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to the surface of the plasma, and aligning the x 
axis with the direction of the vector of the electric 
field, we can readily solve Eq. (5). Inasmuch as 
the time dependence for a monochromatic wave is 
"' e-iwt, only the dependence of Ex on the coordi
nate z is unknown. 

Depending on the boundary conditions satisfied 
by the distribution function on the surface of the 
plasma, we obtain different laws for the absorption 
and reflection of the electromagnetic radiation. 
Thus, in the case of specular reflection of the elec
trons from the plasma surface, we obtain in full 
analogy with reference 4, 

' +oo 
(s) Ex(+ 0) (' /kzdk 

Ex (z) = :rt J ((1)2 I c•) etr ((J), k)- k•. 
-oo 

We have left out here the periodic dependence of 
the field on the time. The transverse dielectric 
constant Etr ( w, k) has the form 

glr (w k) = I _L 4:n:e2 (' d vxa~o I apx 
' I (J) \ p (J) +LV- kv • z 

(7) 

2 +kc __ _ 

=I- 2:::u• [ K2 (:~.) J -1 jkc (J) + ~:'___ (J)' V 1- c~~: 

2 -("'+iv)fc +oo+ivfc 
2:rteNe _ 1 { (' \' 1 dk' 

= I - (J)mc [K 2J .\ + j ) k' (k'- k) 
-oo-ivfc (o>+iv)/c 

X .. I 1- ((J) + iv )2 {I _I_ xr .... ;J_ ((J) + iv )2} 
ll ck' 1 mc2 V ck' 

X exp -- ~. { 
mc2 -y c•k·• ) 

xT, Yc•k·•- ((J) + iv)• J 
(8) 

It must be noted that the Cauchy integral, which 
determines the transverse dielectric constant, 
yields a function which is analytic in the entire 
plane of complex variable k, made discontinuous 
by cuts that begin at the point ± ( w + iv )lc and go 
to infinity. We note that the case of nonrelativistic 
distribution is to some extent more complicated 
in this respect, for when c = co the cut lines join 
together, bisecting the entire complex variable 
plane. 

This important property of the transverse di
electric constant permits, in the case of diffuse 
reflection of electrons from the plasma surface, 
the use of the results of references 4 and 6, ac
cording to which we can write the following expres
sion for the field in the plasma 

E (0) £(d)()= _x_ 
X 2 2:rti 

-iO+co 

\' ~'!_ e'hz 
j k 

-i&-co 

+oo 

X exp { 2~i ~ k ~·k' In [ 1- c~~:. 2 etr (w, k')]}. 
-oo 

(9) 

According to (7) and (9) (see also references 4 
and 6), we have for the effective depth of penetra
tion of the field, in the specular and diffuse cases 
respectively, the following formulas: 

+co 

f.,(S)- - ~ ~ -- dk ---- - (10) 
- :rt .) ((1)2 I c•) etr ((J), k)- k~ ' 

-oo 

00 

A,(d) = { ~ \ dk In [1- (1)
2 e1r (w k)ll-J (11) 

:rt j c2k2 ' J • 
0 

4. We consider first a case in which the effec
tive depth of penetration of the field is much greater 
than both the mean free path and the average dis
tance traversed by the particlE: during each cycle 
of oscillation of the field, the latter being propor
tional to VT I w, where VT is the thermal velocity 
of the particle. Under these conditions the spatial 
dispersion of the dielectric constant is a small 
effect. 

Neglecting the spatial dispersion, formula (8) 
assumes the form 

e1' (w, 0) = e (w) = I - w~ !w (w + iv), (12) 

where 

w~ = 4:rte2N.c2 [K2 (me• \ J-1 ~ dz K2 ( mc2 z). (13) 
xr. _xr.) i z ,xr. 

For nonrelativistic temperatures ( mc2 » KTe), 

(14) 

and in the opposite case of ultrarelativistic tem
peratures10 (mc2 « KTe) 

(15) 

Formula (12) yields for the effective depth of 
penetration the following expression 

A= ic!wVe(w). (16) 

The root in the denominator is extracted in such a 
way that its imaginary part is positive. 

For frequencies considerably greater than the 
collision frequency we have from (12) and (16) 

A= ic [w2 - wg +w~iv/w]-';,. (17) 

However, formula (17) cannot be employed for 
relativistic temperatures ( VT "' c). The point is 
that expression (16) came about as the result of 
the pole of the integrand of (10): 

In the nonrelativistic case, the expansion of the 
transverse dielectric constant in powers of 

(18) 

( kvT I w )2 yields a term "'k2, which for small k 
is small compared with the right half of (18). This 
is caused by the presence of the small parameter 
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( VT I c )2• At relativistic temperatures this is no If inequalities (26) and (27) are violated, the dis-
longer so, and therefore even in the limit as tance covered by the particle during one period of 
k - 0 the role of the spatial dispersion of the field oscillation is no longer small compared with 
dielectric constant cannot be regarded as negli- the effective depth of penetration of the field. 
gibly small. On the other hand, we assume in this section the 

To derive a formula that generalizes (17) and mean free path to be sufficiently small. This leads 
is applicable to the relativistic case, let us obtain to the following limitations: 
a more exact solution of (18). For this purpose 
we make use of the more accurate expression for 
the transverse dielectric constant, which differs 
from (12) in the terms "' k2 ( w » v): 

c2k2 w~ ( v \ c2k2 

8t'(w,k) = 8(w)-a-w2 = 1-- 1-i-l-rJ,-ro2 rol ro2 ' 

(19) 
where 

In the case of nonrelativistic temperatures ( mc2 

» KTe) 

(21) 

(v/w)2 ~ I 8 (w) I for mc2 ~ xT,, (28) 

which are more stringent than (26) and (27). 
5. Let us turn now to a case in which the dis

tance covered by the particle during one period of 
oscillation of the field is still small compared 
with the effective depth of penetration, but the 
mean free path is greater than the depth of pene
tration. In this case, in addition to the contribution 
of the zero of (18) to expressions (10) and (11), the 
form of which is given in (24) and (25), it is neces
sary to take into account also the contribution due 
to the branching of Er. The latter is given by the 
formulas 

1\f-,(S) = - ~ !:.._ (1 __L ~·) 
and for ultrarelativistic temperatures ( mc2 « KT e) n w , ' w 

a = ~ ro2 I w2 (22) 
nr 5 Or • 

In the latter case Eq. (18) assumes the form 10 

w2 = ro2 (1- iv/w) +~c2k2 (23) 
Or 5 ' 

and the term containing k2 is changed by% com
pared with the case in which the spatial dispersion 
is completely neglected. 

Using (19) we obtain from (10) and (11) 

f-,(s> = ~ _1 __ 1_ = ic 1 (24) 
Wfe(w)fi+a v·w2-w2 +w2iv'w Vi+a' 0 0 . 

In order for (24) and (25) to be applicable it is nec
essary that we be able to confine ourselves in (19) 
to terms "' k2 only. This is possible if kvT I w is 
small compared with unity. In this case the cor
rections to formulas (24) and (25), due to the zeros 
of (18) are small. For nonrelativistic temperatures 
this takes place if 

J8(w) I< mc2/xT., (26) 

On the other hand, in the case of relativistic tem
peratures (VT"' c) the following inequality should 
be satisfied 

1 8 (w) 1 < 1. (27) 

r dx Im c'; (w, X (w + iv)fc) 

X j [Re e~(w, x (w + iv)jc)- (1 + iv,'w)2 x2]2 + (Im ef)2 ' (29) 
1 

II {A.\d)}-1= .!_.!:'2(1 .-L iv\3 
J( C I ) 

} C::O x2dx lm ,/; (w, x (w + iv)jc) 

X~ da ~ [aRe£~ (w, x(w+iv)/c)-(1+iv/w)2 x2]2+(alme~)2 • 
0 1 (30) 

Here 

Re81'(w w+iv x) 
+ ' c 

-v-1 { xr.Jf-1l { mc2 1 } X 1-- 1 - 1-- ex ----·-
' x' 2 + mc2 x' 2 ) p r.Te fi-x'-2 ' 

(31) 

The symbol P in (31) denotes that the singularity 
1l(x' -x) must be taken in the sense of the prin
cipal value. 

In the ultrarelativistic case with w2 = w~r for
mulas (29) and (30) yield ( v « w) 
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00 

6/,(sl = ~ ~ \' ~ ( !- _!_) {[1 + ~ (- _3_ + (1- _!_)In x-i) 
w0r 2 .\ x , x2 4.x x x2 x + 1 

1 

] ., ( 1 )2}-1 ie - x2 - + (3:rtj4x) 2 I - X2 = 0.09 co or, (33) 

. 3 1 00 

_ 1 tcoor _ \' da 'i ·( 1 ) {[ 3 ( 2 ( 1 ) ,(\{f.(dl} =--c-4j(lijxdx 1-Xil I+4x -x-+ 1-xz 
0 1 

X In x-1)- .=::]2 + (3rc)2 (·1 _ _!_)2}--1 = _ O.IS iroor. 
x+ 1 a 4x x2 c 

(34) 

For nonrelativistic temperatures we can expand 
in (29) and (30) in powers of (wte/w2)(mc2/KTe)-1• 

We obtain here 

6/,(S) =i2 _.:_~~ ~ > V-2 co2 xT )'fz 
rc co \ me2 

(35) 

6 {f.(d)}-1 = - I .!:2._!::!. _e. 
. co2 vxT 

f2rc c co• me2 (36) 

Formulas (33) - (36) together with (24) and (25) 
determine the effective depth of penetration of the 
field subject to the satisfaction of inequalities (26) 
and (27). 

For the case of nonrelativistic temperatures, 
in particular, we obtain from these formulas when 
wi,e > w2 (with wi,e- w2 » v2 ) 

(37) 

(38) 

The dissipation, for which these formulas stand 
and which is independent of the collisions between 
particles, can be obtained, following reference 5 
(see also reference 8), by considering the work 
performed by the field on a particle which collides 
with the surface of the plasma. In this case, by 
virtue of condition (26), the spatial dispersion of 
the dielectric constant is weak, and consequently 
we can use for the field in the plasma the follow
ing expression 

Ex (z, t) = Ex (0) e .. i.,t exp { + iz Jl'" e (w) w/c}, 

where it can be readily verified that when € ( w ) 
< 0 the average energy acquired by one electron 
is in the case of specular reflection 

2 ro2 - ro2 v2 .• 
w(s) = !!_ Le z E (0) E (0) 

m w4 c2 x x , 

and in the case of diffuse reflection 

(39) 

Accordingly, the total energy acquired per unit 

time by the plasma electrons, referred to unit 
surface, is 

·e2Ne 1 ;·xr. { rol.-co•xr. 1} . 
2 mco2 V 2rcm P co• me• + (1- Ph; Ex (0) Ex(O), 

(40) 

where p is the fraction of the electrons specularly 
reflected from the surface of the plasma. 

In order to obtain a formula similar to (37) and 
(38), expression (40) must be divided by the aver
age flux of the electromagnetic energy of the inci
dent wave, the value of which is ( c/87T) Ex (- oo) 
x E:)t (- oo ), where Ex (- oo) is the amplitude of the 
incident wave. Recognizing that by the boundary 
condition Ex ( 0) = ( 1 + r) Ex (- oo ), and also that 
when wi,e > w2 we have 

we obtain 

-. /8 role- ro2 { xT•)'/, /8xTe 
A = 4 P V it ro• \ me2 + (I - P) V rcme• ' (41) 

which is analogous to the parts of (37) and (38) in
dependent of the collision frequency. 

Since w » v, we should use in this case for the 
collision frequency* 

- 4 Jf21t e•N e 
Veff- -3 ~~- --,1 L, 
· r m (xT.) ' 

rd ({XT; xT.) where L = In -- = In - 2- --2 • 
Pmin mroLe e / 

Therefore the dissipation characterized by formula 
(41) is greater in the case of specular reflection 
than the dissipation due to the collisions 

if the following condition is satisfied 

. e•N¥• me• L'/,< (I-~)· ( coL'e) '!.. 
xr. xT. cole w ; 

In a real plasma this inequality can be realized 
only when w « wLe• where it assumes the form 

(I)~(!) -- -- -
2 '""""' 2 ( xT. )% l' xT•)'/, 1 

Le . e•N¥• me• L • 

It must be recalled that inequality (26) should be 
simultaneously satisfied. 

In the case of diffuse reflection Av is small 
compared with the corresponding expression due 
to the collisions with the surface of the plasma, 
provided that 

*In the ultrarelativistic limit lleff "'13ce4NL/1S(x T)2 • 
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(eWy,!xT,) 3 (mc2/xT,) L 2 < 1 - ro2/rr/f._,. 

It is easy to see that this inequality is valid over 
a relatively wide range. Actually, for frequencies 
which are not too close to w Le• this relation has 
the form 25 NeL2 < T~, where Te is in degrees 
Kelvin and Ne is the number of electrons per cm3• 

We obtain now an expression for A(d) in the 
absence of collisions when w > WLe· We note that 
formula (39) is independent of whether E ( w) is 
positive or negative. We can therefore use formula 
(40), setting p = 0, and use for r the ratio 

1-fe(ro) 1- V1-roi,/ro2 

r = 1 + "JfB(W) = -1-+-=v~1=-=ffio=2 =/ffi=2 • 
Le 

We then obtain 

A<d) _ _ _e Le V -8 yxT ro 2 

- n mc2 (ro + V ro2- roi,)2 • 
(42) 

In particular for w » WLe we obtain from this 

A<d> = _1_1 jxT, ro'ie 
f2n V me" ro" . 

(43) 

6. Let us consider the case of strong spatial 
dispersion, when the effective depth of penetration 
is small compared with the mean free path, as well 
as with the average distance covered by the particle 
during one period of field oscillations. This is the 
case of anomalous skin effect. Under such condi
tions we can use in formulas (10) and (11) the fol
lowing approximate expression for the transverse 
dielectric constant 

gtr (ro, k) = 4niC/ro I k I . (44) 

Here C, according to formula (8), has the form 

n e2N, {xT, , } exp (- mc2(xT,) 
C=-- - 1 1 . 2 m mc2 K2 (mc2(xT e) 

(45) 

In the case of nonrelativistic temperatures 

-- 2N . -C _-.fne qj m 
nr - Jl 2 ----riJ V :;;:[ ' 

e 
(46) 

and in the opposite ultrarelativistic case 

(47) 

Substituting expression (34) in formulas (10) and 
(11) we obtain 

t,(s) = 2 ( 1 + _i ) (~)'/, (48) 
3 \ f3 4nCro ' 

/,(d) = 2. ( 1 + ~) (~)'1•. (49) 
4 . y 3 4nCro 

It should be noted that the last two formulas are 
quite analogous to those obtained by Reuter and 
Sondheimer4 for a degenerate electronic plasma. 

Formula (48) in the nonrelativistic case is similar 
to that obtained by Stepanov. 3 

The condition that the effective depth of penetra
tion be small compared with the average distance 
covered by the electron during one field oscillation 
cycle has, according to (46)- (49), the form w2 

« w1e ( mc2 I KTe) -i in the nonrelativistic case, 
and the form w2 « w~ in the relativistic case 
(vT"' c), which naturally is the opposite of con
ditions (26) and (27). 

I express my indebtedness to L. V. Parilskaya, 
who calculated the integrals in formulas (33) and 
(34). 

APPENDIX 

ASYMPTOTIC BEHAVIOR OF THE FIELD FOR 
LARGE z IN THE CASE OF AN ULTRARELA
TIVISTIC PLASMA 

We now consider briefly the asymptotic behavior 
of the integral (7) for large z in the case of an ul
trarelativistic plasma. In this case the transverse 
dielectric constant has the form 

gtr (ro, k) = 1 

+ 3ro~r {-2 ro + iv + [1 _ (ro + 4v)2] In ro + ~v- ck} . 
4rock ck ck ro+tv+ck 

For the asymptotic behavior of the integral (7), 
the zeros of Eq. (18), located in the upper half
plane k are of importance, since they cause the 
field to fall off exponentially with increasing z. 
The decrement of this damping is determined 
here by the imaginary part of the root of Eq. (18). 
Near such a root, the denominator of the integral 
(7) can be represented in the form 

{ ( ~ ~~r- 2k) k=k. (k- ko) rl. 
Here k0 is the root of Eq. (18). The contribution 
made by such a pole to the asymptotic value of 
our integral has the form 

( ro• aetr )-1 
--.-- 2k eik,z, 
c Bk . k=k, 

In particular, for frequencies close to w0r we ob
tain, according to (23), 

'11/5 c 
- V 24 [ro• - ro2 + iro2 v I ro]'l• 

Or Or 

xexp {izc-1 [ro2 - wz + iro• vI ro]'l•}. 
Or Or 

When extracting the square root it is necessary to 
choose the value with the positive imaginary part. 
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At frequencies w « w0r the contribution to the 
asymptotic value from the pole has the form 

_ _ 1_eik,z 
3ko ' 

k = ( 4nCw )'/'(- "V3 + J..) 
o cz 2 2 ' 

and finally, in the region w » w0r we get 

The asymptotic value is also influenced by the 
singular points of the dielectric constant. Our ex
pression for Etz ( w, k) has in the upper half plane 
a branch point k = (w + iv)/c. Near such a singu
lar point the singular part of the integral (7) has 
the form 

3 w~ cs (k- (w + iv) 1 c) In [k- (w + iV)./ cl 
- 2 (w + iv)2 WS [- (w + iv)z 1 wz;+ 1- 3w~ 12 (w + !v)2) 2 ' 

Accordingly, the following contribution is made 
to the asymptotic value 

- - o .!:.___ - 2i ~ ~ - - o . z-2eUw-v)zfc 
3 w2 .s { z 3 w2 }-z 
2 (w + iv)2 w3 w + w2 2 (w + iV)2 • 

We note that in the original problem the pres
ence of a branch point of the dielectric constant 
leads to a unique dependence on the time for a 
field with specified k, namely, a dependence of 
the form ,.. t-2 e-ickt along with the purely expo-

nential dependence corresponding to the damped 
oscillations and due to the zeros of Eq. (18). 
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