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The analytic properties of the box diagram are investigated in perturbation theory. With this 
diagram as an example, it is demonstrated how the Mandelstam representation must be modi
fied in the case of an anomalous relation between the particle masses. 

As is well known, the Mandelstam integral repre- 0?--r-__ '2_--....P_J 

sentation for scattering amplitudes i is valid only 
if the process does not contain "anomalous" dia
grams. In this paper we discuss the modification 
of the Mandelstam representation in the anomalous 
case by considering the simplest diagram, namely 
the box diagram shown in Fig. 1. The notation is 
as follows: Pi· ki are particle four-momenta; m, 
p, are the masses of the "internal" particles; Pi 
+ p2 +p3 + P4 = 0. We consider the case when Pl 
= p~ = p~ = pa = M2. The diagram is a function of 
the invariants s = (Pi + P2 )2 and t = ( P2 + p3 ) 2: 

1 
A(s,t)= i:rr." 

(' i}(pl + k4 - k1) 6 (p2 + k1 - k2) 6 (pa + k2 - ka) d4k1 d4k2 d4ka d4k, 

X~ (ki- J.L2 + ie1) (k~- m2 + iE2) (k;----: J.L2 + iea) (ki-m" + iE•) • 

For the "normal" case when M2 < m2 + p,2 we 
can write 

1 \ p (s', t') ds' dt' 
A (s, t) = lt2 ) (s'- s- i6) (t'- t- icr) 

ON 

p (s, t) = .r, rv- stf (s, t), 
f (s, t) = 4 (M2 - m2 - f12) 2 + (t- 4 f1 2) (4m2 - s). 

The region of integration ~ is bounded by the 
curve LN in the st-plane (see Fig. 2 ); and 
f ( s, t) = 0 on the curves LN and LA. 

(1) 

The quantity A (s, t) may also be represented 
in the form 

00 

A (s t) =..!.... \ A1 (s', 1 ~ ds' 
' n J s' - s - t6 ' 

•m• 

A t) _ 1 I V f (s, t) + V t (4m2 - s) 
1 (s, - n V ' V- stf (s, t) V f (s, I)- t (4m2 - s) 

t < 0, (2) 

where the integral is to be calculated along the 
contour Ci in the complex s-plane shown in Fig. 3. 
The function Ai ( s, t }, which is for t < 0 formally 
continued into the region s <4m2, has two branch 
points: 
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FIG. 3 

at s = s"" =4m2 - (M2 - m2 - f12) 2 / f1 2 

a logarithmic type branch point, and at 

s = sk =4m2 + 4 (M2 - m2 - f1 2) 2 j (t- 4f12) 

a root type branch point. The function Ai ( s, t) 
may be made single-valued in the complex s-plane 
by introducing a cut from s6 to s and from 0 to 
4m2 (see Fig. 3 ). 

Let us investigate in more detail the motion of 
the singular points S6 and Sk as the mass M 
changes, making use of the method proposed by 
Mandelstam.2 Let at first M2 < m2 + p, 2. We make 
the substitution M2- M2 + iE. Then the points 
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st. and Sk move off the real axis. As M in
creases these points move in the manner shown 
by the dashed lines in Fig. 3; when M2 = m2 + IJ.2 

they cut the contour C1 to the right of the point s 
=4m2, and then, for M2 > m 2 + ~J- 2 , take up posi
tions to the left of the point s =4m2, as shown in 
Fig. 3. In order to avoid cutting the contour of 
integration when passing to the anomalous case it 
is necessary to replace in the expression (1) from 
the very beginning the contour C1 by the contour 
C2• In the anomalous case this leads to the ap
pearance of the integral over the discontinuity of 
the function At( s, t) in the interval st. < s < Sk. 
Passing to the limit E - 0 and evaluating the jump 
in At in this interval, one can obtain for M2 > m2 
+ /).2 

00 

A (s, t) = a (s, t) + ! ~ /~(~:.!_lib ds', (3) 
4m' 

{ SDo 

:n: .) s' -s-16 ' 
sk 

., 
( t) = .i_ \ at(s'' /) d ' 

a s, :n: .) s'- s- i6 s ' 
SA 

2:n: 
a1 (s, t) = f . (4) 

slf (s, I) 

The integral in Eq. (4) can be evaluated direct
ly. As a result it turns out that for t < 0 and st. 
< s < Sk the function a is of the form 

2 [ Jist (sD.- 4m2)+ Y- sD.f (s, /) . J 
a (s, t) = In + m 

fstf (s, /) y st (sD.- 4m")- Y- sD.f (s, t) 

(5} 

(it is obvious that a is symmetric under the ex
change s- t, IJ.- m ). 

Now the function a ( s, t) may be analytically 
continued into the region s >4m2, and then in the 
variable t into the region t > 0. As a result the 
following representation is obtained for a ( s, t) 
for t in the various regions as indicated: 

I __!__ \ -,---:at,_,(_s':_• --'-t )c::- ds, 

'" s D. 
a(s, t) = J _J_ \ ,al(s', /) ds' + ~ \ 'at (s', t)_ ds', 

) :n: .) s - s- 16 :n: .) s - s - 16 

I -00 00 

SDo 

__!__ \ al(s', t) ds' 
l :n: J s' - s - i6 ' ., 

iD. = 4~2- (M2- m2- ~2)2 I m2. (6) 

Thus the diagram of Fig. 1 may be represented 
in the anomalous case in the form 

A (s, t) =a (s, t) 

1 \ p(s',t')ds'dt' + 2 .l ( , .6) (t' t . ) = a (s, t) + A0 (s, t), (7) 
:rt ON S -S-1 - -L<l 

where the function a is determined by the relations 
(6) and (4) and has discontinuities in the variable s 
for fixed real t in the dashed-in region in Fig. 2 
(it is obvious that in the same region a ( s, t) has 
analogous discontinuities in the variable t for 
fixed s ). 

It is interesting to note that as t- 0 the func
tion a ( s, t) has as s- Sk- S6 a pole type 
singularity, namely 

a(s,O) = -~-. 
s..,.sD. s- s D. 

We are most grateful to L. D. Landau who 
called to our attention the fact that in the anomalous 
case there must necessarily exist the singular re
gion shown shaded in Fig. 2. 

One can verify that for the function A ( s, t) the 

curve LN is not singular in the anomalous case, 
since along this curve the singularities of the func
tions a and A0 compensate each other. Indeed, 
for t > 41J. 2 the function A0 ( s, t) has the following 
representation: 

00 

A (s t)- i. \ 1 
0 ' - :n: .) i fs'tf (s', t) 

4m' 

xn --·-I ( ff(s', tl+ if/ (s'- 4m2) ) ds' 
ff(s',t)-iVt(s'-4m2) s'-s-i6" 

Let us separate out of A0 the part that is singular 
at s = Sk (fort >4p. 2); then A(s, t) =A0 +a', 
where 

00 - ) A' _ J:.. __ 1_ 1 i ft (s'- 4m2)+ f f ds' 
o- :n: ~ i fs'tf n ( i ft (s'- 4m2) -1'1 s'- s- i6 ' 

4m2 \ 

s.o,. 00 

a' (s, t) = ~ 2 ds' + \ ds' . 
sk f s'tf(s'- s- i6) 4l, f s'/f(s'- s- i6) 

The function A0 has no branch points at s = Sk. 
After performing the integration a' may be written 
in the form (for 0 < s < S6 ) 
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1 { JisA(sk-s)-J/s(sk-sA) 
a' (s, t) = ---= 2 In 

Vstf Jis(sk-sA) +JisA(sk-s) 

Ji 4m2 (sk- s) + Ji s (sk- 4m2) + 1 n ----::--;;=;=;o=;==~--:-;;-===;=::;;:;:-
Ji4m2 (sk -s)- Ji s (sk- 4m2) 

i -v sk- s - Jis } + In ~ r-;:--;, . 
i r sk-s + -v s 

It is easy to show after analytic continuation into 
the region s ~ sk that the function a' also has no 
singularities along the line s = Sk· 

If one considers the case when the anomaly 
appears only in the simplest diagrams shown in 
Fig. 1, 4 and 5 (it is possible that this is the case 

FIG. 4 

for the real scattering processes of ~ and A 
hyperons3 ) then the exact scattering amplitude 
F ( s, t) may be represented by 

F (s, t) =a (s, t) +a (sc, t) +a (s, Sc) + F 0 (s, t), 

where sc =4M2 - s - t, and the function F 0 ( s, t) 
has the usual Mandelstam representation. 

In conclusion it is important to note that the 
diagram under consideration, symmetric in the 
masses of the particles, constitutes a very special 
case. For arbitrary masses of the particles with 
the structure of the integrand preserved the region 
of integration involved in the determination of the 
function a ( s, t) is substantially modified. In addi
tion, if the particle stability condition is violated 
the diagrams develop complex singularities, with 
the result that the contour of integration in a ( s, t) 
is no longer entirely along the real axis. 
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