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The influence of a relatively weak electric field on the velocity distribution of plasma elec
trons in the range of high velocities is considered. An expression for the stationary electron 
distribution function is obtained and analyzed. The magnitude of the flux of runaway electrons 
in a completely ionized plasma is determined. The effect on this flux of neutral plasma par
ticles is taken into account. It is shown that under certain conditions instabilities in the 
plasma may occur during the development of the discharge which are due to the runaway 
electron flux. The results obtained are in qualitative agreement with experiment. 

1. INTRODUCTION 

As is well known, the frequency of collisions of 
an electron with ions, and also with other electrons 
in the plasma, falls off sharply as its velocity in
creases. Therefore, friction is always negligibly 
small for electrons possessing a sufficiently high 
energy. If a constant electric field is present in 
the plasma the velocity of such electrons increases 
continuously with time; they are usually called 
"runaway" electrons. 

Clearly, in a very strong electric field (or in 
a plasma of sufficiently low density) all the elec
trons are accelerated by the field, i.e., become 
"runaway" electrons. In a weak field only very 
fast electrons will run away, i.e., those whose 
velocity v exceeds a certain critical value Vc· 
The velocity Vc depends in an essential manner 
on the magnitude of the field; in a weak field it is, 
naturally, much larger than the average thermal 
velocity of the electrons in the plasma and, there
fore, the number of runaway electrons is not very 
great in this case. In order to determine it we 
must know the way in which the density of elec
trons having a velocity v ~ vc varies, i.e., we 
must know the velocity distribution for the elec
trons for v ~ Vc· The corresponding problem 
must, naturally, be solved taking collisions into 
account (since they determine the critical veloc
ity Vc, and, consequently also the number of run
away electrons), and is therefore very complicated 
in general. In previous papers 1 only some numeri
cal calculations for completely ionized plasma 
have been carried out ( Dreicer, Bernstein and 
Rabinowitz), and also a solution has been obtained 
for a very strong electrical field when collisions 

may be neglected in the first approximation 
( Kovrizhnykh). 

The investigation of the phenomenon of runaway 
electrons in the case of a weak electrical field in a 
completely ionized plasma is the aim of Sec. 2 of 
the present paper. The effect on the runaway elec
trons of neutral particles in the plasma is taken 
into account in Sec. 3. 

2. THE DISTRIBUTION FUNCTION AND THE FLUX 
OF RUNAWAY ELECTRONS IN A COMPLETELY 
IONIZED PLASMA 

The equation for the electron distribution func
tion f (v, e, t) in the domain of high velocities 
(v » v'kTe/m) in a completely singly ionized 
plasma situated in a constant uniform electric 
field E has the following form* 

i!l_ + eE ( cos 0 a_t_ - sin 0 of ) - _!_ _a_ { v2v (v) [kT e i!l_ + vf 11. at m av v ao v2 av e m av J.l 

v (v) a { . an 
- 2sin 0 ae Sin °asf = Q. (1) 

Here, as usual, e, m and Te are the charge, mass 
and temperature of the electrons; k is the Boltz
mann constant; e is the angle between E and v; 
ve ( v) is the collision frequency of an electron of 
velocity v with other electrons in the plasma: 

*In the velocity range v ~ykTe/m the terms in Eq. (1) 
which describe collisions between electrons should be written 
in a more complicated form (cf., for example, references 2 and 
3). However, this circumstance is not essential in our case in 
view of the fact that in a weak field (E « Eci), which is the 
only one considered in the present article, any significant de
viations of the distribution function from the equilibrium one 
appear only at high velocities, v » ykTefm (cf. below). 
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v, (v) = (4ne4N,fm2v3) ln(mv2Dfe2), (2) 

where Ne is the electron density, D = v'kTe/47re2Ne 
is the Debye radius. We have further 

v (v) = Vt (v) + v, (v) ( 1 ~ kT,f2mv 2 ) 

giving the frequency of collisions of an electron 
with ions and with electrons [Vi ( v) is also given 
by formula (2), but with Ne replaced by Ni]. We 
shall in future, as usual, neglect the variation of 
the logarithmic term in (2) and set mv2 = mv~ in 
the argument of the logarithm, where vc is the 
characteristic velocity of the electrons under con
sideration: mv~ Rl kTeEci/E (cf. below). 

For subsequent developments it is convenient to 
go over to the dimensionless variables 

!l =cos e. u = vfVkTefm, 

't' = v, (VkT,fm) t = 4ne4 N,m-'/, (kT,)-'1•\n (mv~D/e2) t. 

In terms of these variables, Eq. (1) assumes the 
following form 

ar E ( ar , 1 - ~.~.· ar ) 1 a { 1 ar .J_ } 
O't' + T fl ou 1 -u- ou - UZ 7fU u ou ,- f 

Cl I , 

_ 1-1!4u• _i_{< 1 - 2)i?l}=o 
u8 Of.l. fl Of.l. ' 

(1a) 

where Eci is the characteristic (critical) field 
in a completely ionized plasma: 

. _ 4r~es N e I ( mv~D ) 
Ec,- kT, n e• 

N (kT )'I• 2 

= 2.6 · 10-13 k/, In {4·109 - ~i•mvc} (3) 

(here in the last equation Eci is in v /em; kTe 
and mv~ are in ev). In what follows we shall con
sider only the case of a weak electric field E 
« Eci- We note that the field Ec utilized in 
Dreicer's papers1•4 is related to Eci by the ex
pression Ec = Y2EciTe/To. 

A. STATIONARY SOLUTION 

Under stationary conditions ( af/&r = 0) it is 
natural to seek the solution of equation (1a) in the 
form 

f = C exp {<p (u, fl)}, (4) 

where C is a certain constant determined by the 
normalization conditions. The function cp ( u, IJ ) 
must then satisfy the following nonlinear equation: 

u2 _!_.[flu a<p + (1 - f:.L2) o<p 1- ( ~)2- a•<p 
Eci ou 011- J au . au• 

-u (1-.i.) a<p +2(1-__!_) .. ~.-(1--1 ) u• au 4u• r a" 4u2 

2 o•cp ( 1) •(a<p)• x(l-fl)af.l.•- l- 4u,(l-w) 011 =0. (5) 

Before undertaking the solution of this equation 
we shall point out one essential characteristic 
feature of the electron velocity distribution in the 
domain of high velocities in the presence of a con
stant electric field. Under the action of the electric 
field the electrons acquire an additional velocity 
(with respect to the thermal velocity) directed 
parallel to the field. It is redistributed among 
other directions as a result of collisions of elec
trons with each other and with ions. The change 
in the distribution function due to the collisions is 
described by the last two terms in (1). The first 
of them describes the change in the absolute value 
of the velocity or of the energy of a fast electron 
colliding with another electron (as is well known, 
the change in electron energy in a collision with an 
ion is very small). The second term describes the 
change of only the direction of the momentum as a 
result of the collision. Collisions with electrons 
as well as collisions with ions contribute equally 
to such changes. 

In a weak field ( E « Eci) in the domain of 
thermal velocities ( u ,..., 1) the distribution func
tion is, naturally, close to Maxwellian. Under 
these conditions collisions between electrons are 
of little significance; in particular, the Maxwellian 
distribution function results in the vanishing of 
that term in (1) which describes the change in the 
absolute value of the electron velocity as a result 
of a collision. Under these conditions the principal 
role is played by collisions accompanied by a 
change of only the direction of the velocity, as a 
result of which, at thermal velocities, the addi
tional velocity communicated to the electrons as a 
result of the action of the field turns out to be uni
formly distributed among all the directions. Under 
these conditions the distribution function depends 
primarily only on the absolute value of the velocity, 
as is well known (cf., for example, reference 3). 

At high velocities, when the collisions are in
frequent and when as a result of this the electric 
field can produce considerable deviations of the 
distribution function from Maxwellian, the situation 
is significantly different. Under these conditions 
[for u > ( Eci/E) 114 » 1] the most important col
lisions turn out to be those between electrons ac
companied by a change in the absolute value of the 
velocity. The reason for this is that the gradient 
of a function of the Maxwellian type increases 
rapidly (in absolute value) as the velocity in
creases: I df/du I ,..., uf; therefore for large u the 
change in the distribution function resulting from a 
change in the absolute value of u is very large 
[this can be clearly seen from Eq. (1) ]. The last 
term in (1), describing the change in the direction 
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of the velocity, is comparatively small; conse
quently, the redistribution of the electron energy 
over the different directions of the velocity is 
hindered. Therefore, for large values of u, when 
the collisions are infrequent and the electric field 
can produce a large increase in the component of 
the velocity Uz over a mean free path (the z axis 
is parallel to the field), this direction of the veloc
ity must be strongly favored. The velocity distri
bution of the electrons for high velocities must ac
quire a directional character. 

Taking into account the above peculiarity of the 
distribution function in the domain of high. veloci
ties it is natural to seek the solution of Eq. (5) in 
the form of a series in powers of f.l in the neigh
borhood of Jl = 1 (i.e., near the z axis, since Jl 
=cos 9): 

cp (u, !l) = cp (u, 1) + (!l- 1) (~: \=1 

__!_ (~-t-1) 2 (a£1P) 
' 21 a 2 + ··· • . 1-t p.=l' 

= cp0 (u) + (!l- 1) cp!(u) + (!1- 1 )2cp2 (u) + .... 

On substituting this expansion into (5), and on 
equating terms containing various powers of f.l 
- 1, we obtain the following chain of equations for 
the functions cp0, 'Pt. 'P2• .... : 

u3 ..!!._ d(j)o- (d(j)o)2- d2(j)o -u ( 1- _!__) d(j)o 
E ci du du du2 u2 du 

+ 2 (I - 4~2 ) cpl = 0, (5a) 

3 E ~dqJ0 + dqJ1) 2 2 E u-- --ucp1-
Ec1 du du Eci 

_ 2 dqJ0 dqJ1_ d21P1_u ( 1 _ _!__) dqJ1 
du du du2 u2 du 

+ 2 (I- 4~2)(cpl + cp~) + 8 ( 1- 4~2) cp2 = 0, (5b) 

- - --. - U l-- - + 1-- ( m2 ( d(j)l) 2 d2(j)l ( 1 ) d(j)2 ( 1 ) 6 
du du' u2 du 4u2 -r 

+ 8cp2cp1 + cp~) + I8 (I- 4~2) (j)a =0, ... · (5c) 

Equations (5) can be easily solved by succes
sively terminating the chain of equations. By set
ting as a first approximation cp1 ~ 0 and by omit
ting for simplicity small terms (of order 1/u2 ) 

we obtain 
u 

cp<Il=- u l-u2- du = --+--. ~ ( E) u2 u• E 
o E ci 2 4 E ci 

0 

In the next approximation, on setting 'P2 = 0 we 
obtain CfJo = cp~ 0 + cp~2 >, cp1 = cpp>, where 

(6) 

cpW = u2 -. - I 1 - - u2 [ E E ) ]';, 
1 2Ecl \ Eel 

(7) 

etc.* Naturally, the stationary solution under dis
cussion has sense only up to the runaway-electron 
limit, i.e., for 1 - u2E/Eci > 0. 

In order to determine the convergence of the 
sequence of successive approximations we rewrite 
expressions (6) and (7) for cp0 and cp1, by intro
ducing the new variable z = u2E/Eci: 

cp~1l·=- (Ec;/E) <+z- ·Fz2), 

cp~2 l· =- 2'1'(Ec;fE)"'[I- (I- z)'1'], 

p~3l;= +(I- zr1 ++In [z'/, (1- zr1J, ... ; 

cp~l) = T'1• (E.cd E)'1'z ( 1 - z/1', 

cpi2l!= (- 3 + lOz- 5z2)/4(1- z), .... 

From this it is clear that the expansion is in fact 
made in powers of the parameter ( E/Eci) 112, 
which in the case of a weak field E « Eci is 
always small. 

Thus, in the case E « Eci the stationary elec
tron distribution function has the following form at 
high velocities ( u2 = mv2/kT e ;<:. ../ Eci/E) 

{ mv2 E ( mv2)2 
f (v, 6) = C exp - 2iiT + 4£. ~ 

e cz c 

( 2£ ci)'f, [ ( E mv2\ '/'] -- 1- 1---) 
E E ci kTe; 

-(__£)'{• mv2 ( 1- __!!__ mvz \ •;,(I -cos 6) } ' (8) 
2f ci kT e E,,ci kT e } 

*We can also indicate a somewhat different, but a more con .. 
sistent, method of solving the system of equations (5). In par
ticular, with the aid of Eq. (Sa) we can easily express the 
function <pL in terms of Ql0 ; with the aid of Eq. (Sb) we can ex
press Ql2 in terms of Ql 1 and Ql0 , etc., i.e., in the final result 
we can easily obtain a solution of the system of equations (5) 
in which all the functions Ql, ql2 , ql3 ••• will be expressed in 
terms of Ql0 • In order to determine the function ql0 it is neces
sary to use an additional condition. Indeed, a stationary elec
tron distribution is established both when there exist no 
sources of particles, and also when there are 8-like sources 
of particles; naturally, the distribution in the two cases will 
be different, although Eq. (5) is valid in all cases. The con
dition imposed on the sources (or on the flux) of electrons is 
the required additional condition for the determination of ql0 

(cf., for example, reference 3). In particular, in the case under 
consideration at present there are no sources of particles; 
consequently, the total flux of particles over any closed sur
face must be equal to zero. This condition leads to a certain 
complicated integral equation for the function Ql0 • A solution 
of this equation obtained by the method of successive approxi
mations leads to expressions agreeing with (6) and (7). 



ON THE THEORY OF RUNAWAY ELECTRONS 907 

where the normalization constant is C 
= (m/27TkTe) 3/2Ne (Ne is the electron density). 
For not very high velocities v2 ~ kTe /m (or 
more accurately, for v2 « (kTe/m)vfEci/E) the 
distribution function (8) is close to Maxwellian.* 
For large velocities v2 » (kTe/m)vfEci/E the 
distribution function (8) differs from it consider
ably: as the velocity increases it falls off signifi
cantly slower than the Maxwellian one does. 
Moreover, in the high velocity domain the distri
bution function (8) acquires a directional character, 
which is in complete agreement with the qualitative 
analysis of the solution of Eq. (1) carried out ear
lier. The directional nature of the distribution (8) 
is most clearly manifested for v2 = 2kTeEci/3mE. 
The average angular spread 

if =~6f(v,O)d.Qj~f(v,O)d.Q 

has in this case a minimum value: 
- - ~ ~ 
6 = 6mt11 = (27n2/8} '(EJEct) '. 

It is of interest that not only at speeds v2 

< 2kTeEci/3mE, but also at high speeds v2 

> 2kTeEci/3mE (i.e., near the runaway-electron 
limit), does the distribution function become less 
directional.t 

B. THE FLUX OF RUNAWAY ELECTRONS 

The average velocity of an electron parallel to 
the direction of the field Vz = Uz ( kTe /m) 1/2 is 
much greater in the high velocity domain than is 
its velocity in the direction orthogonal to the field 
vr = ur ( kTe/m )1f.!. Because of this, it is the dis
tribution with respect to the velocity Uz which is 
particularly significant for runaway electrons: 

*It has been pointed out earlier that both the initial equa
tion (1) and the method of solving it utilized in this paper are 
valid only at high velocities. However, only at such velocities 
can the electron distribution function differ appreciably from 
Maxwellian. For low (thermal) velocities the electron distri
bution is Maxwellian, and the solution of (8) which we have 
obtained coincides with it. Consequently, the distribution 
function (8) represents well the nature of electron distribution 
over the whole stationary domain of velocities: EcikTe/Em 
::;;, v';:> 0. 

tAn analogous problem was recently investigated by 
Dreicer.• However, he assumed that the distribution function 
could be represented in the form f(v) = fo(v) + f1(v) cos 0, 
where lf11 «fa. He obtained the result that the distribution 
function is Maxwellian right up to the runaway-electron limit. 
As is clear from (8), the above assumption, and, consequently, 
the result obtained, are erroneous in the domain of high ve
locities v' » (kTe/m)y'EcdE, and even more so at the run
away-electron limit V:: = kTeEcdmE. 

co 

F (uz, -r) = 2n ~ f (u, 6, -r) Ur dur. 
0 

On multiplying Eq. (1) by 27Tur and on integrating 
it over dur (neglecting small terms of order 
u~ /ui) we obtain the following equation for 
F ( Uz, T ): 

aF - _E_ {-1 (3- E. u2) F + 1 + u; aF } = 0. (9) 
a-r auz u; E ct z u~ auz 

Here 

(X) I 00 ~ = lq (uz) = ~ u~f dur ~ Urf dur 
0 0 

is the mean square velocity of the electron in the 
direction orthogonal to the field (for a given Uz). 
For the determination of ~ we can utilize the 
stationary distribution function (8) obtained earlier. 
We then find that (for ui < Eci/E) 

(10) 

The problem of finding the flux of runaway electrons 
has thus been reduced to finding the nonstationary 
solution of Eq. (9); we have obtained it earlier. 5 

By utilizing this solution we obtain for the flux of 
the runaway electrons S the following expression: 

_Ne'Veoffu~du2 {u( 3-u;EfEci}]-l 
S- ,r-lj --=exp j U2 dUz , 

I' 2:n: 0 1 + u; 0 1 + u; 
(11) 

where Ne = Ne ( t) is the number of electrons in 
the principal stationary domain of velocities, veo 

= Ve (vfkTe/m) is the mean collision frequency 
for an electron. On taking it into account that 
Eci/E » 1, we can carry out the integration in the 
last expression. We then obtain 

_ 2 . ( E \'/, { Ect - (Ect)'/,} 
S- fli: Ne'Veo Ec) exp - 4£ - f2 E · (12) 

It is shown in reference 5 that the flux of runaway 
particles determined by formulas (11) and (12) is 
established within a time ~ty ~ ( Eci/E ) 3f2ve~· 
Therefore, the weakly nonstationary solution, (11) 
and (12), is applicable only if the parameters Ne, 
Te, E do not change appreciably during this time. 
In particular, since the density of electrons in the 
principal velocity domain Ne is decreased as a 
result of the running away process dNe/dt =- S, 
then in order to be able to utilize expression (12) 
it is necessary to have S~ty « Ne, i.e., it is nec
essary that the following inequality hold 
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which, naturally, is always satisfied in the case 
of a sufficiently weak field E ~ 0.1 Eci· 

If we estimate the flux of runaway electrons in 
the simplest possible manner, assuming that the 
distribution function is Maxwellian right up to the 
runaway-electron limit ( cf., for example, Harri
son's paper1 ), we obtain* S ~ veNeexp { -Eci/2E}. 
This expression for the number of runaway elec
trons qualitatively agrees well with the exact 
formula (12), although the quantitative discrepancy 
between them is quite large for large values of 
Eci/E. It should be emphasized that the agree
ment which we have mentioned is to a certain 
extent accidental. Indeed, as is clear from the 
exact calculation, the friction that determines the 
flux of runaway electrons is primarily determined 
by collisions between electrons which are accom
panied by an appreciable change in electron 
energy. This constitutes only a part of the total 
friction experienced by electrons in a plasma, but 
this part differs from the total friction only by a 
numerical factor. As a result qualitative agree
ment is obtained between an elementary estimate 
of the flux taking the total friction into account and 
the result of an exact calculation. t 

It should be emphasized that the assumptions 
made above in the calculation of the flux (neglect 
of terms of order u~/ui, the utilization for the de
termination of u}. of the stationary distribution 
function, in the evaluation of which, moreover, 
only the first terms of the expansion in powers of 
the parameter E/Eci have been taken into account) 
have enabled us to pick out only the principal 
terms in the exponential factor in formula (12). 
If the next approximations are taken into account 
this should lead to corrections of order unity in 
the exponential term. 

3. INCLUSION OF THE EFFECT OF NEUTRAL 
PARTICLES 

a) Weakly ionized plasma. The possibility of 
electrons being accelerated in a completely 
ionized plasma is a consequence of the fact that 
the frequency of collisions of an electron with ions 
and with other electrons falls off rapidly as its 
velocity increases. As a result friction is always 

*A similar expression for the main exponential term was 
also obtained in Dreicer's paper. 4 

tNaturally, other cases are also possible when there is 
no such agreement. For example, in the case of statistical 
acceleration mechanisms estimates of the magnitude of the 
flux of runaway particles made with the aid of simple for
mulas of the type given above turned out to be completely 
useless.• 

negligibly small for electrons possessing a suffi
ciently high energy, and they are accelerated by 
even a very weak electric field. If the plasma 
contains a considerable number of neutral particles 
the situation is, in general, completely analogous, 
since the frequency of collisions of an electron 
with the neutral particles (atoms, molecules) 
also decreases with increasing velocity in the 
case of electrons possessing a sufficiently high 
energy E ;:;:, ( 3 - 5) q, where q is the ionization 
energy. However, for E ~ Ei the frequency of col
lisions usually increases with increasing E. 
Therefore, in weakly ionized plasma, when the 
principal role is played by the collisions of an 
electron with neutral particles, only the fast elec
trons may run away in a relatively weak electric 
field; their energy must, in any case, exceed 
(3to5)q. 

Because of this, it is possible to simplify con
siderably the kinetic equation for the electron dis
tribution function in a weakly ionized plasma 
f(v, e, t) by utilizing the differential representa
tion for the integral due to the inelastic collisions 
of an electron with neutral particles ( cf. reference 
3). In this case the kinetic equation assumes the 
following form: 

iJj_ . eE (.cos e i!J _sin 8 i!l) _ .!_ ~ {v2 [D (v) iJj_ + F (v) f]} at -t- m \ av v ae v2 av av m 

'Vn (v) a ( . at) 
-2sin6 ao smS as = O. (13) 

Here 
F (v) = N, {<et + L\e) Qt (v) + 2; nw"Qh (v)} 

h 

is the effective retarding force on an electron 
moving with a velocity v in a gas of density Nn. 
Here ~E is the energy transferred to the knock-on 
electron, Qi ( v) is the total ionization cross sec
tion, Qk ( v) is the total cross section for the ex
citation of the level liwk. As is well known, the 
retarding force F may be approximately written 
in the form 

where € is some average excitation energy (the 
calculation in reference 6 yields € ~ Z x 13.5 ev, 
in particular € = 15 ev in hydrogen, E = 30 ev in 
helium ) . For not very high electron energies the 
force F increases with increasing v, while at 
high energies it diminishes. It reaches the maxi
mum value of Fmax = 47re4NnZ/2.72€ for Emax 
= 1.36.* 

*It should be noted that if we use the calculation of F max 
experimental values of the cross sections which, as is well 
known, are considerably lower in the neighborhood of the maxi
mum than the theoretical ones,' then the value of the force 
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Further, in the temperature Te, then we have* 

D(v)= ~{ei(ei+~e)Qi(v)+ ~(1iw~t)2 Qit(v)}, (15) f(v0)=(mf2nkT,)'1•N.exp{-mv~f2kTe}. 
2m2v k 

is the coefficient characterizing the velocity diffu
sion of an electron. For subsequent discussion it 
is convenient to write this expression in the form 

D (v) = e;F (v) d (v) I 2m2v. (15a) 

Here d ( v) turns out to be a very slowly varying 
dimensionless function of v; its values are close 
to unity. In the case of hydrogen, for example, 
d(v) ~ d = 0.94, in the case of helium d = 0.99. 

Finally, vn ( v) is the frequency of collisions of 
electrons with neutral particles: 

'Vn (v) = N n ~ Q (v, 8)(1 -cos 8) dQ, 

where Q ( v, e) is the differential cross section 
for the scattering of an electron by a molecule, 
including elastic scattering, excitation of all levels, 
and ionization. 

The stationary electron distribution function in 
a weakly ionized plasma determined by Eq. (13) 
turns out qualitatively to be completely analogous 
to the distribution function in a strongly ionized 
plasma: with increasing velocity it falls off more 
and more slowly; at sufficiently high velocities it 
acquires a directed character. In the first approx
imation, just as in the case of the strongly ionized 
plasma, the distribution function is symmetric; it 
has the following form 

{ 2m C v dv r eE ]} f = f (v) = f (vo) exp - e; ~ d (v) 1 - F(v) ' (16) 
v, 

where v0 is the lower limit starting at which Eq. 
(13) becomes valid: v0 ..., (5q/m)112; f(v0 ) is the 
distribution function at the boundary v0• If, for 
example, the distribution for v ::: v0 is Maxwellian 

F max is considerably diminished, while €max increases (for 
example,. in helium such a calculation yields Emax = 120 ev 
and Fmax = 6 x 10-2"Nn dynes, while formula (14) gives 
Fmax = 10 X 10-26Nn dynes and Emax = 35 ev). Moreover, the 
differential representation of the integral due to the inelas-
tic collisions of an electron with atoms utilized in Eq. (13) is 
valid only at sufficiently high electron energies E » Ei. This 
condition is not sufficiently well satisfied even in the region 
of maximum retardation force, and more so when E < Emax. As 
a result of this the values of the force F max• and, consequent
ly, also of the field Ecn (cf. below) are determined here only 
very approximately. We also note that the expressions given 
here for the retarding force F and for the diffusion coefficient 
D are valid only at not too high plasma temperatures, when 
exp{-licuk/kTI « 1; for kT ~ licuk .. ~ it is necessary to take 
into account that some of the molecules are in an excited state 
(cf. reference 3). 

For sufficiently high velocities v > v0, the 
account of f ( v0 ) naturally introduces only a small 
correction in expression (16) for the function f ( v). 

As is clear from (16), the limit for the station
ary solution v = vc is determined by the condition 

F (vc) = e£. (17) 

From this it may be seen that the stationary solu
tion exists only under the condition 

E < Ecn = Fmax I e = 4ne3NnZ /2.72 6 ~7. w-15Nn v/cm 
(18) 

Consequently the field Ecn is the critical field in 
a weakly ionized plasma. 

When condition (18) is fulfilled only electrons 
of velocity greater than vc are accelerated. 
Naturally, the flux of runaway electrons is in this 
case determined by the expression 

v 

dNe eE 3 f { 2m\ vdv [ 1 eE 1} 
S =-dt = mvc Vr (vo) exp - e j d (v) - F (v) 

t'o 

eE {mv~ E \} ~- va f (v0 ) exp -=-- (1--
mvc T dei Ecn) 

(19) 

where mv2 ~ ( 0.3 to 0.4) mv~, v~ = 2kTe/m. In 
the last expression we have taken into account the 
fact that the function d is practically independent 
of v and may be replaced by its average value d. 
We note that the last exponential factor in (19) 
may also be represented in the form 

( Ecn } 
exp 1- 4EA , 

A = 8ne4N nZ In mr I eidF max~ 5,4 E In mt I eid. 

Here the constant A turns out to be a very large 
quantity, A;:::. 10. This means that the flux of run
away particles for E < Ecn is not large; it falls off 
very sharply with increasing ratio Ecn/E, consid
erably faster than in the case of a fully ionized 
plasma [ cf. (12) ] . Qualitatively the nature of the 
dependence of the flux of runaway electrons on the 
intensity of the field E in a weakly ionized plasma 
is almost the same as in a strongly ionized plasma, 
which is as it should be. 

*For v < v0 the distribution function f(v) can, of course, 
differ considerably from Maxwellian. For example, in inert 
gases the Druyvesteyn distribution holds up to E - e:i, while 
above Ei there applies a function f(v) which falls off even 
more sharply with increasing velocity (cf., for example, refer
ence 3). 
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b) Arbitrary degree of ionization. The equation 
for the electron distribution function in the domain 
of high velocities for an arbitrary degree of plasma 
ionization is completely analogous to Eqs. (1) and 
(13) discussed previously; only we must now take 
into account in this equation collisions both with 
neutral particles and with free electrons and ions. 
The stationary solution of this equation has at high 
velocities the same character as before; in the first 
approximation the following expression holds for 
f(v) 

{ r F(v)+mvve(v)-eE } 
f(v)=f(vo)exp -\mvdveJ(v)d(v)f2+kT.mvv,(v)' 

~ ~~ 

where all the quantities have the same meaning as 
before.* 

The boundary v c of the domain in which the 
stationary solution is valid is determined by the 
condition 

(21) 

and, correspondingly, in the first approximation the 
flux of runaway electrons is given by 

Vc 

{ \ F(v)+mvv,(v)-eE } 
S = R (vc) v}f (vo) exp - ~ mv dv eJ (v) d (v) 12 + kT,mvv, (v) ' 

v, (22) 

where R ( vc) is some effective frequency which 
varies from eE/mvc to veo ( E/Ec )112 depending 
on the degree of plasma ionization. For sufficiently 
high degrees of plasma ionization [when the elec
tron distribution in the principal domain of veloc
ities is Maxwellian ( cf. reference 3)] the expo
nential term in formula (22) can be written in the 
form exp {- Ec/4E}; if the next approximation is 
also taken into account ( cf. Sec. 2) the expression 
for the flux assumes the form 

s = N eVeo (E I Ec)11' exp {- Ec 14£- V2 (Ec I E/1'}, (23) 

where Ec is the critical field: 

mv')2j( mv~D e;d mv•\ + N nZ In~ kT,N, In ---e=r- + 2 N nZ In~ j. (24) 

At high degrees of plasma ionization formula (23) 
agrees with (12), while at low degrees of ionization 
(in the first approximation) it agrees with (19), as 

*If the electrons in the principal stationary domain of ve
locities do not have a Maxwellian distribution, then in formula 
(20) we have to replace kTe by mvf/3, where mvt/2 is the 
average electron energy. 

it should.* At low temperatures kTe < Ei the 
field Ec increases monotonically with increasing 
degree of plasma ionization. 

c) Instability of a spatially homogeneous plasma. 
It was shown above that the flux of runaway elec
trons in a plasma in the case of a relatively weak 
electric field increases sharply with increasing 
electron temperature and usually falls off with 
increasing degree of plasma ionization. Both 
these quantities vary appreciably in the course of 
the development of a discharge in a gas in a con
stant field. The flux of runaway electrons varies 
correspondingly. 

It is obvious that the magnitude of the flux S is 
uniquely related to the value of the electron distri
bution function with respect to the velocity Vz 
(the z axis is parallel to the field E ) in the 
domain of very high velocities, beyond the limit 
for runaway electrons v~ » v~ = EckTe/Em: 

F (vz) = F (e:!z (t- fo) )= e~ S (to). 

From this it follows that if the flux S ( t0 ) decreases 
with time then the distribution function F ( Vz) ac
quires a region in which 8F/8vz > 0, since 

aF m aF m2 dS 

However, it is well known that a spatially homoge
neous plasma may become unstable with respect to 
longitudinal excitations 8 (plasma waves) if the 
distribution function has a domain in which 8F / 8vz 
> 0. The criterion for instability 

'it (aF I avz) v~rooi2N,v d'- I 

can in our case be rewritten in the following form 

(25) 

Here .6.t = t - t0 is the time which will have 
elapsed from the instant t 0 when the flux begins 
to decrease to the instant t when an instability 
will arise in the plasma; w0 = ( 4rre2N/m )112 is the 
plasma frequency. The characteristic size of the 
excited inhomogeneities is ~ ~ eE.6.t/mw0 [the 
time .6.t is determined by relation (25) ]; their 
characteristic frequency is w ~ w0• 

An experimental investigation of runaway elec
trons in a helium plasma placed in a constant 

*For low degrees of plasma ionization formulas (23) and 
(24) given here, which take the second approximation [i.e., 
terms of order (Ec/E)'h] into account, are valid only for hydro
gen (Z = 1). For other gases the coefficient .,fJ: in front of this 
term must be replaced by y'Z+T; the index of the power of 
the ratio E/Ec in the factor preceding the exponential is also 
changed. 
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electric field was carried out in a stellarator. 9 

In this case the electron temperature at first in
creased sharply, but later if the field was lower 
than Ep:::::: 1.5 x 102p0vlcm it stayed for a certain 
length of time at an almost stationary level kT e 
~ ( 0.5 to 0.9) Ei ( cf. references 10 and 11). Dur
ing this period (the period of the temperature or 
the current ''plateau'') the degree of plasma ioni
zation qi continued to increase slowly. Therefore, 
the flux of runaway electrons diminished, since at 
a constant temperature the flux decreases with in
creasing degree of plasma ionization. Conse
quently it was maximum at a time close to the 
instant of formation of the plateau; in this case the 
field is given by Ec = Ec min:::::: (50 to 35) E. Con
sequently, the total number of runaway (acceler
ated) electrons is given by* 

f':..Ne =~ Sdt ~s (Ec;'n) j ~~; ~ (10-7 -10-5) N •. 

Further, in virtue of the fact that during the 
current "plateau" the flux of runaway electrons 
decreases with time, an instability of a spatially 
homogeneous plasma should arise. The criterion 
(25) for instability to occur will be satisfied after 
a time 

elapsed since the beginning of a decrease in the 
flux. Consequently, such an instability must arise 
during the current "plateau''. Experimentally, 9 

bursts of hard x rays were observed just at this 
time, due to the impact of a large number of ac
celerated electrons against the walls of the vessel; 
they are generally accompanied by powerful micro
wave radiation from the discharge at frequencies 
w ~ ( 1 to 3) x 1011 (under these conditions the 
plasma frequency is of the same order of magni
tude). Apparently, it can be concluded that these 
bursts of radiation during the current "plateau" 
(according to the terminology of reference 9 -

bursts of "type A") are a result of the mech
anism for the instability of a homogeneous plasma 
indicated above. 

*The first of the numbers quoted here corresponds to the 
case E "" 0.6 Ep, the second corresponds to E "" 0. 9 Ep [in 
making these estimates the values of Te(qi, E/Ep) calculated 
in reference 11 were utilized]. It should also be emphasized 
that the total number of runaway electrons is very sensitive to 
the parameters. For example, if the temperature or electron 
density is changed by 10% then &Ne changes by almost an 
order of magnitude. In virtue of this, an investigation of the 
flux of runaway particles (with respect to number and to the 
energy distribution of the fast electrons) could serve as a good 
method for the measurement of electron temperature. 

We should also point out another type of in
stability produced by runaway electrons in an 
equilibrium plasma pinch confined by a strong 
longitudinal magnetic field.* This instability is 
associated with the inhomogeneity of the electron 
density in the pinch, and arises only in the case of 
a high degree of plasma ionization. Indeed, the 
electron density in an equilibrium pinch falls off 
as it approaches the boundary: Ne- 0 as r -a. 
Correspondingly the field Ec ( r) also decreases: 
Ec ( r) - Ecn as r- a, with Ecn being very 
small at sufficiently high degrees of plasma ioni
zation. Therefore, even if in the principal region 
of the pinch the electric field E is weak ( E 
« Ec ), yet in a layer of thickness 

( iJN,) kT,D 
M = EkT.j4:n:e8 -0 ln - 2 r r=a e· 

near the boundary of the pinch it is always strong 
( E ~ Ec). In this layer, therefore, all the elec
trons run away at once. Therefore, in this region 
the plasma consists of a stream of electrons 
moving among the ions. As is well known, 8 such a 
system is unstable with respect to excitation of 
plasma waves as soon as the velocity of the elec
tron stream v0 exceeds their mean thermal 
velocity. If an instability arises the amplitude of 
those waves builds up most rapidly whose wave
length is given by lt = v0 I w0 = Dvo I ( kTe lm) 112• 

Their frequency w is determined in this case by 
the following expression: 

( 'I ,1 kT D)'/, 
w= EkTef 2 'em'I•M 'In-f.-

( M \'/, 
~ 1.2 · 109 tJ_i (kT.)''•£'1•. (26) 

Here M is the ion mass, Mp is the proton mass; 
numerically kT e is expressed in ev and E in 
vlcm. The velocity of the stream required for 
the excitation of the above instability, v0 

:::::: (2 to 3) (kTelm) 1f2, is attained after a time 
At= mv0 leE has elapsed since the electric field 
has been switched on. The excitation of such an 
instability must be accompanied by a burst of 
radiation at a frequency of order w determined by 
formula (26), and also by a sharp decrease in the 
current associated with the runaway electrons, 
i.e., by a decrease of the total current I0 by a 
quantity of order I0.6.rla. At the same time x rays 
may be completely absent since the instability is 
excited by electrons of low energy E = mv5 12 
...., ( 2 to 5) kT e· 

*The whole investigation is carried out here without taking 
into account the magnetic field Hr due to the current itself. 
This is only valid in the presence of a strong external longi
tudinal magnetic field H0 »Hr. 
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