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Thermodynamic quantities of an electron gas in a constant magnetic field H are calculated 
in the general case of a non-convex Fermi surface. It is shown that the presence of self
intersecting trajectories leads to quantum oscillations of these quantities as functions of H. 
It is pointed out that the experimentally observed oscillations corresponding to "anomalously 
weakly filled" bands may be due either to separated small surfaces, and are then described 
by the Lifshitz-Kosevich theory, 1 or to small bulges or depressions in the main large band, 
in which case they are described by the present theory. 

1. INTRODUCTION 

IN a series of papers by I. Lifshitz and Kosevich 
(see, for example, reference 1 ), it has been 
shown that, owing to the strong Fermi degeneracy 
of the electron gas, quantization of the energy lev
els of an electron with an arbitrary dispersion law 
E = E (p) ( E is the energy, p is the quasimomen
tum) in a constant magnetic field H ( 0, 0, H) 
leads to an increment, which is periodically de
pendent on 1/H to the thermodynamic quantities. 
The period in the reciprocal of the magnetic field 
·~ ( 1/H) is equal to 

!:,. (1/H) = eh / cSm (~), (1) 

where Sm ( t) is the extremal (with respect to Pz ) 
area of the intersection of the boundary Fermi sur
face E ( p) = t with the plane pz = canst. Only this 
cross sectional area enters, for the reason (as is 
easy to understand ) that the fundamental contribu
tion to the oscillating part of the statistical sum 
for the smooth function S ( t, Pz ) will be made by 
just those electrons of the narrow layer close to 
the extremal (but, naturally, not equal to zero) 
sections, where, in the classical case, the majority 
of the electrons move with a period close to the 
given period in the region 

(2) 

(Po is of the order of the limiting momentum in the 
direction pz, Eo is the limiting energy, J-1 = eti/m*c, 
and m * = ( 27r) - 1 aS/ aE is the effective mass of the 
electron). 

It is clear from (2) that the relative contribution 
of the periodic part of the thermodynamical quanti-

ties (which is comparable to the part which is mono ton
ically dependent on the magnetic field) is also of 
order (JJ.H/E0 )112• Inasmuch as the part 0 which 
depends monotonically on H is even and, conse
quently, is proportional to (JJ.H/E0 ) 2, the absolute 
value of the periodic increment to n is propor
tional to (JJ.H/E0 ) 512, and the increment to the mag
netic moment, which is linear in H, is proportional 
to (JJ.HI Eo )312• 

If the Fermi surface is convex, then the only 
non-monotonic part of the statistical sum is con
nected with the extremal cross sections. In the 
case of a non-convex surface, the area of the cross 
section is generally not a smooth function: at a cer
tain point p~ ( t ) , which corresponds to the self
intersecting classical orbit in a magnetic field, a 
transition takes place from one cross section to 
two separate cross sections (Fig. 1), while the 
derivatives as/at, as/apz at this point go to in
finity logarithmically for all three areas. 

It is natural to expect that these ''singular'' 
cross sections also contribute an oscillating part 
to the statistical sum (see also reference 2 ) . It 
is physically clear that inasmuch as the picture 
of levels takes on the ordinary "non-singular" 
form at distances as small as the order of the 
distance between levels, i.e., of the order of 

then the irregular part, which is connected with 
self-intersection, will be at least (Eo IJJ.H )112 

times smaller than the periodic part due to ex
tremal sections. The absolute value of the ir
regular increment to the linear momentum is 
consequently proportional at least to (JJ.H/ Eo )2 

(3) 

608 
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a b 

FIG. 1. a- case of "necking in," b- case of a "trough;" 
Pz = const. 

[instead of (J.LH/ Eo )312 for the periodic part], 
while the contribution to Q is proportional to 
(J.LH/ Eo )3 [instead of (J.LH/ Eo )512 ]. 

Thus the contribution to the oscillating terms 
from the cross sections with self-intersection is 
small in comparison with the known contribution 
of the extremal cross sections. However, the fol
lowing circumstance must be kept in mind. 

1. It is well known that the experimentally ob
served quantum oscillations (the De Haas-Van 
Alphen and the Shubnikov-De Haas effects) are 
brought about not by the main "large" bands, 
but by some anomalously weakly filled bands with 
density of the order of 10-2 -10-6 electrons per 
atom. The genesis of these bands is completely 
unclear at the present time. It can be thought in 
each case that these bands are either separated 
small surfaces or small "bulges" or "depres
sions" in momentum space, which destroy the 
local bulge of the surface corresponding to a 
principal band. 

Up to the present time only the first of these 
cases has been considered, although it does not 
follow at all that precisely this case takes place. 
Furthermore, it is difficult to ascertain experi
mentally which one of these actually does take 
place, since the oscillations have an entirely 
similar character in both cases, and the depend
ence of the amplitude of the oscillations on the 
magnetic field is difficult to determine unambigu
ously. The fact is that the amplitude of the oscil
lations is extremely sensitive to the mosaic struc
ture, impurities, etc., and is least reliably estab
lished experimentally. 

The interpretation of the observed effects can 
also be ambiguous. Thus, the directions in which 
one of the periods of the oscillations disappears 
can be interpreted either as the directions in which 
the cross sections with self-intersection disappear, 
or as the directions of open cross sections. There
fore, for explanation of this problem, it is neces
sary to draw upon resonance measurements in 
weak magnetic fields and on a study of quantum 
oscillations in high frequency and constant mag
netic fields (see reference 3), in addition to a de
tailed investigation of the picture in strong mag
netic fields. In such a case one makes use of the 

known noncentral character of cross sections with 
self-intersection and of the fact that the effective 
mass goes to infinity on these sections. 

It is quite possible that both situations are re
alized in different metals. 

2. Even if there is a case of a separated but 
non-convex surface, the "fine structure" due to 
self-intersection has quite an appreciable value, 
since for "small bands," Eo/J.LH"' 1- 102• Fur
thermore, the "fine structure" from similar 
bands can be larger (because of the smallness of 
the effective mass) than the principal structure 
from the "large" bands. 

3. For a one-parameter family of directions of 
the constant magnetic field, there may in general 
be no cross section which is extremal in area, 
and the cross section with self-intersection may 
be the maximum in area. (Such a case exists, 
for example, for graphite.) In this case evidently 
only those oscillations remain which correspond 
to trajectories with self-intersection. In the in
vestigation of the anisotropy of the effect, a sharp 
decrease in the amplitude of oscillations should 
be observed as one approaches a similar direction 
(this fall-off can also be ascribed to the approach 
to the open trajectories ) . 

In the present paper, we calculate the thermo
dynamic potential Q and the magnetic susceptibil
ity in the general case of the presence of self
intersecting orbits. 

2. GENERAL FORMULA FOR THE THERMODY
NAMIC POTENTIAL 0 

1. It is well known that the thermodynamic quan
tities can be computed if the thermodynamic poten
tial 0, equal (per unit volume) to 

Q = - 8 2J In [ 1 + exp (~-; 8) J , 8=kT (4) 

is known. The summation is carried out over the 
quantum states, k is Boltzmann's constant, T is 
the temperature, t is the chemical potential. 

Naturally, we will be interested only in the part 
of Q connected with the electron gas, and there
fore knowledge of the energy levels of the electrons 
in a constant magnetic field is sufficient in our 
case for the calculation of Q. As was shown by 
the author, 2 the energy levels can be obtained 
from the two branches of the dispersion equation, 
which have tbe form 

[2n± (e, p,) + l]n = S 1 + S 2+ cp (k) ± cos -1 {e-kn 

X(2 cos 2kn)-'1•cos(S1-S2)} = (2n + l)n, (5) 

in the case of the presence of "necking-in," and 
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in the case of the presence of a "trough" 

[2n± (8, Pz) + 1]11: = S1- S2 

+ <p (k) ± cos-1 {l" (2 cosh 2k1t)-'1• 

X cos(S1 + S2)} = (2n + 1) 11:, 

where n is an integer in each case, 

(k) _ 2 { l I k I 1 l r (1/ 4 + ik)} _1 
<p - kn 7 - 21 nrp;4 -ik)-tan tanhk11:, 

c e-eo(Pz) ,,---
S (k) = 2eli.H S (Pz), k = 2eli.H c y I mx.my I• 

(7) 

Eo (pz) is the energy for which self-intersection 
takes place for a given pz; the origin of the coor
dinates is located at the point of self-intersection 
for the given Pz; the Px and Py axes are directed 
along the bisectors of the angles formed by the 
trajectories at the point of intersection, so that 
mx > 0, my< 0. The quantity S (pz) is the area 
in momentum space; in the case of "necking in," 
81 corresponds to the area bounded by the orbits 
to the left of the Px axis and 82 to the right of 
Px; in the case of a "trough," 81 corresponds to 
the total area bounded by the orbit, including the 
area up to the Py axis, while 82 is the area of the 
"hole," including the area up to the Py axis (see 
Fig. 2). Equations (5), (6) are applicable in the 
quasi-classical case, that is, for 81 2 (k) » 1 and, 
consequently, n » I. ' 

p~ p~ 
oO I ~<0 

E==f}\ 
'~~---, ,, \ 

\,_~ __ .,,/ Py 

a 

Px Pr 
•>0 K<O I 

FIG. 2. a-case of necking in, b-case of a trough; the 
direction of the classical motion of the electron is shown by 
the arrow. 

In accord with (5), (6), the energy depends on 
n and Pz and, as a function of these quantities, 
divides into two branches: 

8 = 8± (n, p,). (8) 

( For simplicity, we shall not write down the spin 
component ± en/2m0c, m 0 is the mass of the free 
electron, since it can be established that it has no 
effect on either the general course of the discus-

sion nor on the final formula if we take into account 
the spin pair before the statistical sum.) 

2. Corresponding to (8), we have 

(n~in =min n± (e, Pz)). (9) 

The coefficient of proportionality is the same as in 
the case of free electrons considered by Landau,4 

and is equal to eH/n2c. This can be established, 
for example, by considering the electrons to be 
located in a box, where all the quantum numbers 
are discrete, and by calculating g as the dimen
sions of the box approach infinity. The thermody
namic potential is found either directly from Eq. 
(4) or by the equation 

n=-~Nmds. 

where n"' n1, n2, n3 are the quantum numbers, 
while l/Jn is the wave function (which is easily 
found in the quasi-classical region just as in ref
erence 2 ) . Detailed calculation shows that the 
Landau factor is not changed if there is degener
acy in the generalized momentum Px, that is, if 
the levels are computed with accuracy up to 0 ( h2 ), 

while the wave functions are computed with accu
racy up to 0 (h). Inasmuch as we are interested 
only in the oscillating part of ~g as a function of 
H-1, and the lower levels ( n "' 1), as can be 
shown, give only the part of g proportional to H2, 

summation in (9) with the previous accuracy can 
be carried out from n = 0. (Strictly speaking, this 
only makes it possible to calculate ~g. since for 
n"' 1 the fundamental equations (5), (6) are invalid.) 

Thus g 1 (by g 1 we mean any function which has 
the same oscillating part as g) has the form 

00 00 

Q _ 2eH8 '\~ ( d [! (1 + {6- e+ (n, P2 ) }) 
1 - - Cfi2 LJ .) Pz n exp 9 

n=O -oo 

+ In ( 1 + exp {6- e_~n, Pz)} )] . (10) 

We now make use of Poisson's formula: 
oo oo oooo 

~ <p(n) = +<p (0) + ~ <p (n)dn + 2 R.e ~ ~ dn<p (n)e 2"ikn. 

n=o o k=l o (11) 

It can be shown that the first two components in 
(11) do not give terms which oscillate with the mag
netic field and therefore can be omitted in g 1. 

Integrating the remaining expression by parts, 
and carrying out the substitution of E + for n in 
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the first integral, and C in the second [such a 
substitution of variables is possible because of 
the monotonic character of n± ( E), which is shown 
in reference 2, and which is determined by Eqs. 
(5) and (6)], and setting the lower limit of integra
tion over E + and E_ at zero (since only n » 1 
are important), we obtain 

00 00 00 

Q1 = - '!~. Im L; ! ~ dpz ~ fo(8 ; ~) exp {2nikn:: (e, Pz)} de. 
k=l -co (12) 

Making use of the formula 

; sin 2:rtkx _ 1 + [ ) _ '"( ) 
.::..1~-z--X X ='I'X 

k=l 

(13) 

(it is easy to establish the validity of this relation 
by expanding ljJ ( x) in a Fourier series ) , where 
[x] is the largest integer contained in x, we can 
write 

00 co 

D1 =- :~~ ~ dpz ~fo (e ;~)de {'IJ (n+ (e, Pz)) 
-00 0 

+ 'iJ (n_ (e, Pz))}. (14) 

Knowing n1 it is easy to obtain the oscillating part 
~N of the number of electrons N. For this pur
pose, it suffices to know the value of N1 which has 
the same oscillating part as N: 

Nr(~, H, 8) 
00 co 

=- ~~ = - 2:h~ ~ dpz ~ f~ (e) de {'IJ (n+) + 'iJ (n_)}. (15) 
-00 0 

The fact that we have obtained the oscillation of a 
number of electrons should not be remarkable, 
since all the quantities were determined in the con
venient independent variables t and H. Actually, 
t = t ( H), where the form of the function must 
again be found from the requirement of the con
stancy of the number of particles; the oscillating 
part of t ( H) is again determined by the absence 
of oscillations in the number of particles. 

Equation (15) takes on an especially simple 
form at absolute zero temperature, when f0 (E) 
= - o ( E - t) (the right-hand side is the Dirac o 
function), and 

P~ax 

D.N (~, H, 0) = 2:h~ ~ dpz {'iJ (n+ (~, Pz)) + 'iJ (n_ (~, Pz))} 
p~in 

(16) 

Comparing (14) and (16), we find 

00 

D.Q (~, H, 8) = ~ fo(8 ;~) D.N (e, H, O)de. (17) 

Thus the determination of ~n reduces to find
ing the fluctuations of the number of particles at 
absolute zero as a function of the chemical poten
tial and the magnetic field. It is easy to see that, 
with accuracy up to terms exponentially small in 
t/®, 

~ 00 

D.Q (~, H, 8) = ~ D.N (x) dx + 8 ~ f 0 (x) {D.N (~ + 8x) 
0 0 

- D.N (~- 8x)} dx. (18) 

3. We now calculate how the limiting transition 
to the ordinary formula comes about at E = t for 
Pz far from the self-intersection. For such pz, 
we have I k I » 1, and, throwing away only terms 
which are exponentially small in Eqs. (5) and (6), 
we obtain the following expression for the inte
grand in (16): 

a) when k > 0 for "necking-in" or when k < 0 
for a "trough": 

(19) 

since 

'iJ (x + 1) = 'iJ (x); 'iJ (x + H + 'iJ (x) = 'iJ (2x); (20) 

b) when k > 0 for "troughs" or when k < 0 for 
''necking-in'': 

since 

cos-1 {cos(S1-S2)}= ~ -(-ti<s,-s,);nJ'!Je1 ~ 8·).<22) 

'iJ {a - 1/2 - 1!2 (- Iir>J 'iJ (~)} + 'iJ {a+ 1/, + 1/2 (- l)[r>J 'iJ (~)} 

='!J(a+[3-; 1)+'1J(a-[3-;i). (23) 

One can establish the validity of the functional 
relationship (20) by making use of the definition of 
the function ljJ and considering separately the cases 
x- [x] > % and x- [x] < Yz. The relation (23) is 
obtained if we consider the even and odd [,B] sepa
rately and make use of Eq. (20). 

As has already been shown,2 the function cp (k), 
which approaches zero as 1/l k I when I k 1- oo, 

is retained in (19) and (21) because it gives a 
small correction to the usual rule of quasi
classical quantization for I k I » 1. The fact that 
Eqs. (19) and (21) in the quasi-classical case, for 
cp ( k) = 0 in the variable t, H, give a fluctuation 
in the number of levels (proportional to the num
ber of electrons), is self-evident. 

We note that for I k I » 1, Eqs. (19) and (21) 
coincide with (16), (5), and (6) within experimental 
accuracy. 
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4. We now transform (16) to a form which is 
convenient for the calculation of ~N. For brevity, 
we shall demonstrate all the transformations by 
an example of the "necking-in." We make use of 
the equation 

1 00 1 
'ljl (n+) =-it Im 2] T exp {2:rti!n+ (Pz)}. (24) 

1=1 

Let the condition n~ ( p~k)) = 0 be satisfied at the 
points p~k). We circle these points with cuts of 
length w- 0, and outside of these cuts we dis
place the integration contours in (16) upwards, 
where the derivative n~ > 0, and downward where 
n~ < 0 (Fig. 3). On the displaced portions, the 
series (24) converges and can be summed: 

'ljl (n+) = ! Im In ( 1 - e2nin+). (25) 

Inasmuch as the integral over cuts of length 2w 
[both from (24) and (25)] tend to zero as w- 0, 

FIG. 3 

on the contour the cuts can be moved on the real 
axis ( w = 0 ), and we can write the expression 
(25) under the integral everywhere. We can now 
again restore the contour to the real axis every
where except for points on the axis where n+ is 
equal to an integer. These points must be passed 
around from above if n~ > 0 at them, and below if 
n~ < 0. 

Similar considerations are carried out for 
1/J (n_ ). 

Summing ljJ ( n+) and ljJ ( n_ ) , we obtain 

2eH (' ' 
D.N = 7z2elm )PzdPz(2tx + i 2)p2 /(1 + 2tx + t 2), (28) 

where the rule of going around the poles of the de
nominator remains as before. 

5. Thus, as is seen from the foregoing, the be
havior of the functions n± (pz) plays a vital role. 
We therefore investigate this function. First, we 
note that since only the pz close to p~ ( E ) are 
important, i.e., close to those Pz for which, for 
a given E, there is self-intersection (this state
ment is clear physically and will be rigorously 
demonstrated in what follows ) , while for Pz 
= p~ (E), by definition, k = 0, Vx = Vy = 0 and 
dE0 /dpz = 8E0 /Bpz = Vz (E), then we have 

2eliH dk ----
-c- k (Pz) = dpz (pz- p~ (e))= - (pz- p~ (e)) vI mxmy I Vz (e) 

( ~") - 0 (?) 21iQ (~) k 
e ;:::::: ':> ' P z - P z "' - v~ (~) ' 

.Q-1 m = e~ VI mxmy II . (29) 
•=~·Pz=P~(~) 

Here v~( t) ¢ 0, since the four equalities E = t, 
Vx = vy = Vz = 0 are generally incompatible. It is 
clear that (29) is approximately true for any 
I Pz - p~ (E) I which is small in comparison with 
the "width" in Pz of the surface E (p) = t. 

It is clear from (29) that ~/dpz"' dn±/dk. 
From the definition of n± (k) according to (5), 
and from the form of si> s2 for k « ko, found in 
reference 2 [ Eq. (1.10), where one must substi
tute the expression (29) in S1, 2 (Eo (pz ), Pz) and 
consider that Eo ( Pz) ~ t ], it is easy to see that 

l:!N = ~~ Im ~ dp2 In (1 + 2tx + t 2); 

t = eif = exp {i [S1 + S 2 

For k0 - oo, we have n± (k) > 0 for any k. Thus, 
(26) in the case of interest to us, all the "dangerous" 

points on the pz axis (for k « k0 ) are bypassed 
from above. 

+kIn (k2 je2))} r (1/c-~k~ coshkn:-i~inhkn, 
r (1/c + tk) V cosh 2kn 

X = (2 cosh 2k:rt) _.,, e -kn cos ( s1 - S2)' 

1 + 2tx + f2 = (1- e2nin+) (1- e2nfn_), 

n± = exp {if± i cos -1 x). (27) 

The integration is carried along the real axis 
everywhere where the expression 1 + 2tx + t2 ¢ 0; 
points where this expression vanishes are sur
rounded from above or below in correspondence 
with the rule given above. 

Integrating (26) by parts and discarding the 
monotonic part outside the integral sign, we obtain 

3. CALCULATION OF THE FLUCTUATING 
PART OF 0 

1. We shall first compute the quantity ~N. We 
divide the integration over Pz into three parts, 
corresponding to values of k in the interval 
(- N, N) ( 1 « N « ko) and outside this interval. 

For Pz corresponding to k outside the given 
interval, we have 

k~1 

-k~t' 
(30) 

and calculation can easily be carried out. In this 
region, naturally, terms appear which correspond 
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to k = ± N which are obviously contracted with 
similar terms obtained in integration in the in
terval corresponding to - N :s k :s N, and terms 
obtained by Lifshitz and Kosevich, 1 corresponding 
to the extremal values of the area at large dis
tances from the cross section with self-intersec
tion, where either 81 ( Pz) or 82 ( Pz) goes to zero 
for k < 0 or (81 + 82 )'p vanishes for k > 0. 

z 
One can show that, for example, for Vz > 0, the 

quantity ( 81 + 82 )' Pz vanishes in any case. In fact, 
for self-intersection, we have Pz = p~ ( t) and 
( 81 + 82 )' Pz = - co • Consequently, with decrease 
of Pz• the positive quantity 81 + 82 close to this 
point increases and, since the qu~tity 81 + 82 

n.ust be equal to zero for Pz = p~m, then 
( 81 + 82 )'pz must be equal to zero for some pz. 
This extremum of 81 + 82 must correspond to 
k ,.. 1 only close to the chosen directions of the 
magnetic field. However, in this case also, the 
terms obtained by Lifshitz and Kosevich are ab
sent only for the given surface, while for other 
surfaces (on which E ( p) = t is decomposed) 
they can be present. 

We shall now make clear what yields the re
gion corresponding to - N :s k :s N. In this region 
one can, by using Eqs. (26) and (29) and the fact 
that 

S1.2 = s~.2 +kIn (k~I.2> I e I k 1), s~.~ = S1,2 (~, p~ (~)), 

k~1>~k~2>~1, k~1 ' 2>~J;H, (31) 

write ~N in the form 

N+io 
!1N = ZeHQ (~) Im I In ( 1 + 2tx + t 2) dk; 

rch cv~ (6) J . 
-N+<O 

:>< r (114- ik) cosh kn- i sinh kn 
r (114 + ik) V cosh 2kn ' 

x = e-h (2. cosh 2kl1)-'1• cos (S~- sg +kIn k~1> 1 k~2>). (32) 

In the calculation of the above integral we con
sider the contour shown in Fig. 4, where 1 « N' 
« k0• The integral over the upper horizontal is 
exponentially small (in N'), the integrals along 
the verticals, which are the continuation of the 
contour on the horizontal axis, are not of.interest 
to us. Therefore, the integral from ~ N to N is 
essentially equal to the integral along the contour 

(-N,N; N,N+iN'; N+iN', -N+iN'; 

- N + iN', - N). 

Inside this contour the quantity 1 + 2tx + t2 has, 
for k0 » 1, pairs of poles located close to one an
other at the points ( 1 + n/2) i/4 (n = 0, 1, .... ) 
and roots near these points. The integral along 

-N N 

FIG. 4 

the contour therefore reduces to the sum of inte
grals over contours surrounding each pair. Each 
of these integrals is equal to 27ri~k, where ~ 
= kp - k is the complex distance between the neigh
boring poles and the origin. Inasmuch as only the 
pair closest to the horizontal axis is important, 

11N = 2 Yil eHQ (~) (k(lJ k(2) )-'/• {<k<2l I k<ll >''• sin (2so - ~) 
hcv~ ( ~) o o o o 1 4 

2 

+ (k~1 > 1 k~'lf''sin (2sg- 2 )} = ~ Aa sin (2s~ -- :) ; 
cx=l (33) 

it must be that 
tlN ~HI k't' ~ H'l•. 

Thus the amplitude of the fluctuations resulting 
from the self-intersecting cross sections is shown 
to be ( E 0 I J.1. H) times smaller than the amplitude of 
the oscillations from the extremal cross section; 
the oscillations have a simple periodic character 
with frequencies 28~ and 28~ [ 8 ( k) ~ 8 ( Pz)!, 
see the definition (7) of the function 8 (k)]. 

In all the discussions given above it was not 
explicitly assumed that n ~ co, that is, that neither 
mx nor my is equal to zero. For the chosen di
rections of H (which form a single-parameter 
family) it is possible that mx = 0 or that my= 0. 
Naturally this changes somewhat the structure of 
the levels and leads to an increase in the ampli
tude of oscillations [approximately by a factor of 
( Eo/J.1.H) 114 ]. For isolated directions, where 
mx = my = 0, the amplitude of the oscillations on 
cross sections with self-intersection can be shown 
to be of the same order as at the extremal. 

Thus the picture of the quantum oscillations 
changes materially in the approach to certain 
chosen directions. We also note that in the case 
of a strong anisotropy, one of the values of k~1 • 2 > 
can be shown to be of the order of unity. In this 
case, there arise complicated irregular oscilla
tions. 

2. Inasmuch as 8 [ E, p~ (E)] is a function of E 
which does not have a logarithmic singularity, the 
calculation of ~n and its temperature dependence 
is carried out. starting from Eqs. (18), (33), with 
accuracy the same as given by Lifshitz and Kose
vich, 1 and yields 

/1.Q(~, H, 8) = ± z::_eliH 2rc2c8fi'zcx!:_1iH Acxsin(2S~ -~·), 
mcx c sinh(2n2c9ma je1iH) 4 

<X=l (34) 
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- 1 dS (e, p~ (e)) 
ma=2n de (35) 

From these formulas, it is easy to find all the 
thermodynamic quantities. Strictly speaking, one 
would have to compute the dependence of t (H), 
but it is easy to see that, as in reference 1, the 
consideration of this dependence does not change 
the form of the equations, in which one can write 
t ( 0) as before. 

I am indebted to I. M. Lifshitz for valuable 
discussions. 
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