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By the use of the analytic properties of a certain matrix element it is shown that the result of 
Goldberger and Treiman regarding the decay 1r- IL + v is valid for wider classes of strong 
interactions than those found by Feynman, Gell-Mann, and Levy, and in particular for the 
ordinary pseudo scalar theory with pseudoscalar coupling. A formula is obtained which can 
be used for an experimental test of the assumptions that are made. Lepton decays of hy­
perons and K mesons are also discussed. 

1. INTRODUCTION 

AT the present time the theory of the universal 
V-A interaction given by Feynman and Gell-Mann 
and by Sudarshan and Marshak is in good agree­
ment with all the experimental data on (3 decay and 
the decay of the IL meson, 1 The experimental ratio 
of the probabilities for the two types of 1r -meson 
decay, R ( 1r- e + v )/R ( 1r- IL + v ), also agrees 
with the theoretical prediction. It may therefore 
be supposed that the universal V-A theory is 
also valid for processes of capture of IL mesons 
in nuclei. 

One of the most important problems is the cal­
culation of the probability of the decay 1r- IL + v 
according to the universal V-A theory. This 
problem has been studied in detail in a paper by 
Goldberger and Treiman (G. T. )2 by means of the 
technique of dispersion theory. Despite the fact 
that G. T. made many crude approximations, the 
numerical result of their work agrees almost 
exactly with the experimental result. 

Quite recently Feynman, Gell-Mann, and Levy 
( F .G. L.) have reexamined this problem in a very 
interesting paper.3 They have shown that the G.T. 
result can be obtained rigorously in certain mod­
els. Namely, let us write the Hamiltonian for (3 

decay and /.l -meson capture in the form 

H = {g0/Jf2) (Pa + Va) La+ Herro. adj. (1) 

where 

(2) 

Pa and V a are the p·seudovector and vector cur­
rents for the weak interactions. F.G.L. succeeded 
in finding three models of the strong interactions 
in which the following equation holds: 

aa.Pa (x) = ian (x) I J12. 

where a is a constant parameter and 7r ( x) is the 
pion-field operator. By using the equation (3), 
F.G.L. obtained the G.T. result in a simple and 
elegant way. 

F.G.L. stated that their results would be ex­
tended later to any theory of the strong interactions. 
In their new theory, it is said in reference 3, there 
appears a form factor cp ( s ), which is very compli­
cated in the usual theory. In the opinion of F.G.L. 
it is only in the case of their models that it is 
reasonable to assume that cp ( s ) is slowly varying. 

After studying reference 3 we have come to the 
conclusion that the G. T. result is a good approxi­
mation for a wider class of strong interactions. 
In the present paper this conclusion is examined 
under the following assumptions: 

1. The matrix element < n I 8aP a ( 0) I p > is an 
analytic function of the variable s = - ( Pn - Pp )2. 

2. If the matrix element of the commutator for 
equal times is equal to zero, then we can write a 
dispersion relation without subtraction. 

3. The contribution of the nearest singularities 
predominates in the dispersion relation. 

From our point of view the form factor cp ( s) 
actually is slowly varying in any theory in which 
there is a dispersion relation without subtraction 
for a certain matrix element. 

In Sees. 2 and 3 a derivation of the G.T. result 
is presented in the most general form. It is shown 
that the G.T. result is also a good approximation 
for the ordinary pseudoscalar theory with pseudo­
scalar coupling. A relation is obtained between 
the pseudovector constant gA for /.l capture, gA 
for (3 decay, and the pseudoscalar coupling con­
stant f for /.l capture. Since we can measure gAp.. 
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gAf3· and f separately, a test of this relation be­
tween the constants gives a sensitive criterion for 
the correctness of the assumptions made about the 
universality of the pseudovector coupling in the 
weak interaction and the analyticity of a certain 
matrix element. 

In Sec. 4 the lepton decays of hyperons and K 
mesons are treated in an analogous way. From 
the data on the lifetime of K mesons the result is 
obtained that the pseudovector coupling constant 
gAy for the {3 decay of hyperons is smaller than 
the coupling constant gA for the {3 decay of 
neutrons. 9 

2. THE RESULT OF GOLDBERGER AND 
TREIMAN 

Let us write 

iOaP a (x)- 0 (x). (4) 

Applying this equation to the decay 1r - fJ. + v, we 
get 

(0 I 0 (0) In> = - q a (0 I P a (0) In), (5) 

where qa is the four-momentum of the pion. The 
matrix element < 0 I P a ( 0 ) I 1r > can be expressed 
in the form 

<OIPa(O)In> = -qJ(m2)1~ (6) 

where m is the mass of the pion and F ( m2 ) is a 
constant parameter, which is determined by the 
lifetime of the pion. 

Substituting Eq. (6) in Eq. (5), we get 

<O I o (O) In>=- m2F IV2q0 • (7) 

Let us now turn to the consideration of {3 decay 
and fJ. capture. In the general case the matrix 
element <niPa(O)Ip> is of the form 

<n I prJ. (0) I p)=Un {gAr. rs +if (Pp- Pn)a rs} up, (8) 

where gA and f are invariant functions of 
s = -(Pp- Pn)2. 

Applying the relation (4) to {3 decay and fJ. cap­
ture, we get 

(n I 0 (0) I P) = - (pp- Pn)a (nIP a (0) I P) · 

Substituting Eq. (8) in Eq. (9), we have 

(9) 

<n I 0 (0) I p) = i [2MgA + fs] unr5up. (10) 

T (s) =- V2GFm 2 I(- s + m2) + T' (s), (12) 

where G is the renormalized constant of the 
strong interactions of pions with nucleons, and 
T' ( s ) is a function analytic in the region 

(13) 

The derivation of (11) - (14) is given later, in 
Sec. 3. It is also shown there that T' ( s) is in 
fact a slowly varying function for small s. 

In the region I s I < m 2 the function T' ( s) is 
approximated with good accuracy by a constant. 

Let us rewrite (12) in the form 

T(s) =- V2GF<p(s)m2 j(- s + m2), (14) 

where 

<p(s)= I +(1.,(s-m2)jm2 • (15) 

Comparing (11) with (10), we get 

2MgA + fs =- V2 GF <p (s) m2 I(- s + m2). (16) 

A very important fact is that the relation (16) 
holds for all s. Setting s = 0, we get 

F=-2MgAJ3JV2G<p(O), gAJ3=gA(O). (17) 

This is the fundamental result of F .G.L., which was 
first obtained in the paper of Goldberger and 
Treiman. 2 

For fJ. capture 

Sp. = -Mm~j(M +mp.) = -0.9m;. 

From (15), (16), and (17) we get* 

2MgAp. + ffLsfL = m2 2MgAJ3/(-sfL + m2). (18) 

Equation (18) is an exact relation between gA, f 
for fJ. capture and gA for {3 decay, which can be 
tested experimentally. It must be pointed out that 
the derivation of (18) has been carried out in the 
most general way, for an arbitrary value of a. As 
will be shown in Sec. 3, this holds for almost any 
theory in which the matrix element <n I BaPa 
x ( 0) I p > is analytic. 

Substituting the experimental values of G, gA{3 
and F in (17), we get 

qJ (0) = 0.8. 

From this and Eq. (15) we find 

(1., = 0.2. 

(19) 

(20) 

We emphasize that the G.T. result is valid only 
for those theories in which the condition a « 1 
holds. This question is discussed in the following 
section. 

The central problem is to find the connection 
between the matrix elements < n I 0 ( 0) I p > and 
< 0 I 0 ( 0 ) I 1r > . This can be done if we use the 
analyticity properties of the matrix element 

*This relation is contained implicitly in a formula of Gold­
(11) berger and Treiman.• <n I 0 (0) I p) = iunrsupT (s), 
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3. THE ANALYTICITY OF THE MATRIX 
ELEMENTS 

Let us now turn to the calculation of the 
matrix element <n I 0 ( 0) I p>. Using the 
standard method, 5 we write 

(n I 0 (0) I p) =- iun ~ d'ze-iPn• (0 IT (TJ (z) 0 (0)) I p) 

-u:~d4ze-lPn"~(z0)(0J['i'n(Z), O(O)Jip), (21) 

where TJ (z) = iS+os/oi/in (z) is the current opera­
tor for the neutron field. Hereafter the equal­
time commutator will be omitted; it would give an 
additive constant in the final expression and would 
not affect the analytic structure of the matrix ele­
ment, for example, the locations of the poles and 
their residues, the branch points, and so on. 

We note that 

T (TJ (z) 0 (0)) = B (- z) [0 (0), TJ (z)) + TJ (z) 0 (0), 

where e ( z) = 1 for z0 > 0 and e ( z) = 0 for z0 

< 0. The second term makes no contribution to 
the matrix element. Thus we have 

(n I 0 (0) I p) = - iun ~ d4ze-lPn• e (- z) (0 j[O (0), TJ (z)) I p). 

(22) 
In the coordinate system Pp = 0 it is easy to 

show by the method of Bogolyubov6 that the func­
tion T ( s) in Eq. (11) has a pole at s = m2 and a 
cut that begins at the point s =9m2• At other 
points it is analytic, if the following inequality 
holds: 

(Pno = M -sf 2M). (23) 

Unfortunately, the inequality (23) is satisfied 
only in the case of imaginary nucleon mass. We 
assume in what follows that the analyticity of the 
matrix element in the variable s does not change 
on analytic continuation with respect to the mass 
variable. 

The residue at the pole s = m2 is easily calcu­
lated and is equal to 2112G < 0 I 0 ( 0) I 1r > ( 2q0 ) 112• 

Thus we have 

T(s) = -Y!Gm• (OIO(O)Jlt) V2q0 

+ T' (s) = _ y2GFm• + T' (s). 
-s+m2 

(24) 

The corresponding Feynman diagram for the term 
with the pole is shown in the drawing. 

In Eq. (24), T' ( s) is an analytic function with a 
branch point at s = 9m2• The spectral resolution 
of the function T' ( s) if of the form 

00 

T' ( ) + s (' p (s') d , 
s = ao ~ ) s' (s' - s) s , (25) 

vm• 

" 

where p ( s') is the spectral function. For small 
s we can expand T' ( s) in a power series in s, 
which has the radius of convergence 9m2• 

Setting 

one can easily show that for large n 

lim,. an+I s I< J4- . 
n-+oo an 9m 

(26) 

(27) 

Therefore the series (26) converges rapidly in the 
region I s I < m2• 

If the spectral function does not change sign, 
the inequality (27) holds also for small n. In this 
case, for arbitrary n > 1 we have 

We note that for {3 decay and fJ. capture the 
distance between the points s = 0 and Sf.J. 

=- 0.9m~ is much smaller than the radius of con­
vergence 9m2• Therefore with good accuracy we 
can replace T' ( s ) by a single constant both for 
{3 decay and for f.l capture (the error is of the 
order of 0.9m~/9m2 ~ %0 ). 

Thus we get the final result given by the for­
mulas (14) and (15). 

Let us now go on to the consideration of the 
quantity a. If the matrix element of the equal­
time commutator is not zero, then in general one 
must use a dispersion relation with a subtraction. 
In this case the quantity a is proportional to the 
subtraction constant a0, which can be very large. 

If, on the other hand, the matrix element of the 
commutator is zero, than there is a dispersion 
relation without a subtraction. Then it is reason­
able to suppose that the contribution of the nearest 
singularity predominates and the quantity a is 
small (a~ 0.2« 1). 

Thus it is reasonable to assume that cp ( s) is 
slowly varying for any theory in which there is a 
dispersion relation without subtraction. 

Let us consider the ordinary pseudoscalar 
theory, with the Lagrangian 
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L = -N(oh+ Mo- iGo("=n) r6) 

>< N- m~n2 I 2- (aan)2 I 2- A.0n 4 • (28) 

By means of the gauge transformation 

1t-+ 1t + v (4M0 +2M) I 300 

we get by the standard method, explained in ref­
erence 3, 

- 2 -
O(x) = io.P. = 2G0NNn + i 3 (M0 - M) N'ty6N 

+ (m~n + 4A.0n2n) (4M0 +2M) I 3G0 • (30) 

We shall show in this case that the equal-time 
commutator for the operator 0 makes no contri­
bution to the matrix element < n I 0 ( 0) I p >. Let 
us examine the matrix element of the commutator 

I= (0 I2G0Nn + i-} (M0 - M) "=Y6N IN). 

From symmetry properties we have 

(31) 

Multiplying Eq. (31) on the left by the matrix ry5, 

we get 

i 3AuN = - 2i (0 IT] (0) IN), 

where 

is the current of the nucleon field. It is known 
that the matrix element < 0 I TJ ( 0) I N > is equal 
to zero, and therefore I= 0. 

Thus we have shown that in the ordinary pseudo­
scalar theory there exists the pseudovector cur­
rent (29), which satisfies all the necessary require­
ments. 

If the pseudovector current is of the ordinary 
form 

then the matrix element of the commutator is not 
zero, and in general there is no dispersion rela­
tion without subtraction. Even in this case there 
is hope that the G. T. result is valid. This question 
will be discussed in the Appendix. 

4. LEPTON DECAYS OF HYPERONS AND K 
MESONS 

The experimental limit for the probabilities of 
lepton decays of A and ~ hyperons is an order of 
magnitude smaller than the theoretical value cal­
culated on the hypothesis that the effective coupling 
constants in hyperon decays are equal to those in 

{3 decays.7 Many authors have expressed the 
opinion that the universality of the weak interac­
tions evidently does not extend to strange-particle 
decays. Nevertheless, it is reasonable to assume 
the existence of a limited universality [a lepton 
current in the form (2)8 ]. 

In what follows we assume that the K meson is 
pseudoscalar and the V and A interactions exist 
for the lepton decays of strange particles. In this 
case the Hamiltonian for the weak decays of strange 
particles is of the form (1). Following the example 
given in Sec. 2 for the pseudoscalar theory with 
pseudoscalar coupling, we can construct the 
pseudovector current in such a form that a dis­
persion relation without subtraction holds for the 
matrix element <N I 8aPa I Y>. 

Generally speaking, the matrix element for 
hyperon decay consists of three terms: 

<N I Pa (0) I Y> = uN {gAvY.Y5 + i~v [(pN- Pv) 

>< r. -r. (PN- Py)l rs + ifv (Pv- PN)GtY5} uy, 

from which we have 

<NIO(O)IY) = i(Nia.P.IY) 

= i [(MN + Mv) gAY+ fvs] u-NY6Uy, 

(32) 

(33) 

where s =- (py- PN)2• Repeating one after 
another the arguments presented in Sees. 2 and 3, 
we easily get the following equation: 

[(MN + Mv)gAY + fvs] 

(34) 

where GKY is the renormalized coupling constant 
for the KYN interaction, and FK is a constant 
parameter associated with the decay of K mesons. 
We have further 

(0 / Pa (0) I K) =- qa.FK IJ/2qo. (35) 

We can determine FK from data on the lifetime 
for the decay K- p. + v. In Eq. ·(34) Ty ( s) is a 
function that is analytic in the region 

(36) 

Let us denote by TN the kinetic energy of the 
nucleon recoil in the rest system of the hyperon. 
Expressing s in terms of TN, we get 

s = (Mv- MN)2- 2MvTN. (37) 

In the present case the values of s that correspond 
to {3 and p. decays are very close together, as 
compared with the distance between the s given by 
Eq. (37) and s = ( mK + 2m )2• Therefore with good 
accuracy we can replace Ty ( s) by a constant ay. 
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Thus we have 

!(MN + My)gAY + fys) =- GKYFKmk. / (-s + mk) + ay. 
(38) 

The relation (38) can be used to test the univer­
sality of the pseudovector current in lepton decays 
of strange particles. 

Applying the dispersion theory of Goldberger 
and Treiman, we find for the function fy: 

fy =- GKYFK /(- s + mk_) + T~ (s), (39) 

where Ty ( s) is a function analytic in the region 
(36), which with good accuracy can be replaced by 
a constant ay. 

Substituting Eq. (39) in Eq. (38), we get 

(MN +My) gAY=- GKYFK + ay- sa~. (40) 

The relation (40) is a generalization of the formula 
of Goldberger and Treiman for the decay of 
strange particles. 

The experimental data on the lifetimes of K and 
7r mesons show that Fk « F~. Therefore it can be 
seen from a comparison of Eqs. (40) and (16) that 
to accuracy a y- sa'y 

(41) 

even for the case in which GKY and G are of the 
same order of magnitude. This fact was first 
pointed out by Sakita. 9 

We emphasize that our method can also be 
easily extended to the case of a scalar K meson 
and to other types of weak interactions (for 
example, S + P). 

In the case in which the relative parity of K 
and YN is positive, we have to deal with the 
divergence of a vector current 

ia"V" = 0 (x). (42) 

The matrix element <N IV a ( 0) I Y> is of the 
form· 

<N 1 v" (O) 1 Y> = 11,. {gvyr" +iCy !(PN- Py) r" 

-r" (pN- Py)l + idy (Py- PN)"} uy. (43) 

From this we have 

<N I 0 (0) I Y> = i [(M N- My) gvY + dys) uNuY. (44) 

It is easy to repeat the remaining arguments, and 
the final formula will be of the form 

(MN- My)gvY +dys =- GKY F Kmk_j (- s + mk.) + ay. 
(45) 

Applying the dispersion theory for the function 
dy, we find 

Substituting (46) in (45), we get 

(MN-MY)gyy=--GKYFK+ay-a~s. (47) 

Comparing (47) and (16), one sees that to accuracy 
ay-say 

( gyy)'~( 2MN FKGKY)'~5C(GKY)t 
KAil MN-MY f"G" G" ' 

where C is of the order of unity. Therefore in the 
case of the scalar K meson the small probability 
of lepton decay of hyperons could be explained only 
by having the coupling constant GKY for the KYN 
interaction be smaller than the pion-nucleon 
constant G7r. 

We note that A and ~ can have different rela­
tive parities. Let us consider this case. For sim­
plicity we call the K particle a scalar, if the rela­
tive parity of K and AN is positive, and a pseudo­
scalar if it is negative. In the case of the pseudo­
scalar K meson, Eq. (40) holds for the decay of A 
particles, and Eq. (47) holds for the decay of ~ 
particles, if we write <N I Pa I~> in the form 
(43). In the case of the scalar K meson, con­
versely, Eq. (47) holds for the decay of A particles 
and Eq. (40) for ~ particles, if we write 
< N I V a I ~ > in the form (32). 

We note that the relations (38) and (45) can be 
used for the determination of the renormalized 
coupling constants GKY, if precise experiments 
are made on the decays of strange particles. 

The writer expresses his hearty gratitude to 
Professor M.A. Markov, Ya. A. Smorodinskil 
and Chu Hung-Yiiang, and also to Ho Tso-Hsiu' and 
V. I Ogievetski1 for their interest in this work 
and a discussion of the results. 

APPENDIX 

In the usual theory the pseudovector current 
has the form 

P" = N-r.r"r6N, (A.l) 

for which the divergence has been calculated in 
reference 3 and is given by 

a"P" = 2Mofi-r.r6N- 2iGufJ N-r:. (A.2) 

In order to calculate the matrix element 
<o I 8a.Pal 1r>, we write Eq. (A.2) in the form 

a"P" = - i 2GMo j + i 2GMo [ (m2- m2) 1':- 4A.on21: I 
0 0 0 

(A.3) 

(46) where j is the meson-field current. Using the 
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fact that the matrix element < 0 I j ( 0) I 1r > is 
equal to zero, we get 

<O I aaP a (0) In> = i2MoG-;16m2 VZ3 I 11 2q0 

- 8M 0f.. 0G;;-1 10 llt2lt jlt)- 2100 (0 I NNn llt), (A.4) 

where Z3 is the renormalization constant for the 
pion wave function. 

We now go on to the consideration of 
<n I BaPa I p >. We rewrite Eq. (A.4) in the form 

a P . 4M0 + 2M • -f- O ( ) 
a a = - l :lGo J X , (A.5) 

where the operator 0 is that of Eq. (30). 
In the present case we can write a dispersion 

relation without subtraction for the matrix element 
< n I 0 ( 0) I p >, with the term with the pole defined 
by Eq. (12). Thus we have 

i <nl a~Pa (0) I p) = +(4Mo -1-2M) 000- 1 d (s) F (s)VZiuny6up 

-f-(niO(O)[p), (A.6) 

where d ( s) and F ( s) are the respective form 
factors for the 1r -meson propagation function and 
the vertex part. If the first term in Eq. (A.6) is 
small in comparison with the term with the pole, 
then the G. T. result would hold also for the usual 
theory. 

We assume that the first term in Eq. (A.5) pre­
dominates. Comparing Eqs. (A.5) and (A.6), we get 

(A.7) 

By means of Eq. (A.7) the first term in Eq. (A.6) 
can be expressed in the form 

2M + M Fm2 - (A 8) i -;Mo G llm2 unr6upd (s) F (s). · 

Since in perturbation theory the quantity om2 di­
verges quadratically, it is very probable that 

2M0 + M m1 ~I 
3M0 6m'"""""' • 

(A.9) 

In this case the first term in Eq. (A.6) is actually 
small in comparison with the term that has the 
pole. Therefore it seems to us that the G. T. 
result is also valid for the usual theory. 

It is interesting to note one more example, in 
which the pseudovector current has the form 

iP a (x) = a.,'IC (x).. (A.10) 

It is easy to show directly from Eq. (A.10) that 
the matrix element <n I Pa ( 0) I p > for {3 decay 
is equal to zero. 

In this case the divergence of the pseudovector 
current is 

io"P" = m~'IC- iG0N-cy6N- 4J...0n2 '1C = m2'1C (x) 

- j (x) = 0 (x)- j (x). (A.ll) 

From this we get 

(O[O(O)In> = i<Oia'"P'"(O) In) =m2 VZa/V2q0 , (A.12) 

i <n I a~P<>I p) = <n I 0 (0) I p)- i V2o d (s) F (s) Vlaunr6up. 

The term with the pole is of the form 
(A.13) 

(A.14) 

Comparing the expression (A.14) with the 
second term in Eq. (A.13), we verify that they are 
of the same order and cancel each other. 

From this example it can be seen that for those 
theories in which a dispersion relation without 
subtraction does not hold for the matrix element 
<nl BaPa (0) I p> the G.T. result is in general 
not a good approximation. 
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