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The general properties of cylindrical waves in a cold plasma are examined. The results 
are applied to low-frequency natural oscillations of a plasma cylinder surrounded by con
ductive walls. The conditions of magneto-acoustic resonances that ensure effective pene
tration of the oscillations inside the plasma have been found. The nature of the resonance 
phenomena depends on the linear density of the electrons. Approximate formulas are given 
for the natural oscillations of a long plasma cylinder. It is shown that purely radial os
cillations are not feasible in a region close to the geometric mean of the electron and ion 
cyclotron frequencies for even slight deviations from it sharply change the resonance 
frequency. 

WmLE the propagation of waves in a plasma has 
been adequately treated in the literature (see, for 
example, references 1-4) natural oscillations of a 
bound plasma have been studied mainly in the high 
frequency regions, 5•6 where the ion motion can be 
neglected. Low-frequency ( magnetohydrodynamic 
and magnetoacoustic) oscillations of a bound plas
ma have been examined only for special cases.7- 10 

In this paper we investigate oscillations of a 
plasma cylinder surrounded by conducting walls in 
a homogeneous static longitudinal magnetic field. 
The main problem is to find the natural oscilla
tions, but we study first the general properties of 
cylindrical waves in a cold plasma. Attention is 
directed particularly to the case when the oscilla
tion frequency is low compared with the plasma 
frequency ( magnetohydrodynamic and magneto
acoustic oscillations). 

The entire examination is carried out in a 
linear approximation by neglecting collisions and 
other dissitpative processes (an ideal plasma) 
and thermal motion (cold plasma). The plasma 
is assumed to consist of two components ( elec
trons and homogeneous ions) and its density is 
constant over the entire area of the examined 
cylinder. 

BASIC EQUATIONS 

By assuming that the electron mass is small 
compared with the ion mass, we can write equa
tions for the motion of charged particles in a 
plasma in the form of equations for the mass
velocity: 

(1) 

and for the current density 

In the linear approximation for a cold plasma 
without collisions these equations have the form 
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p = Mn, + mne= Mn,, 
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(3) 

(4) 

(5) 

H0 is the static magnetic field, which is assumed 
to be homogeneous and, according to the linearity 
condition, is large compared with the alternating 
magnetic field R. 

Setting the time dependence in the form e-iwt, 
we can write (3) in the form of 

v = (ifpcw) [j XH0]. (6) 

Substituting in (4) and expanding the triple vector 
product we finally get: 

ro2fll 
w2i = i 4~ ij + WtWe [i- h (ih)]- iwwe [ix'h], (7) 

where h is a unit vector along the static magnetic 
field H0 , w0 is the electron plasma frequency, 
while Wi and we are the ion and electron cyclotron 
frequencies. 

If the electron mass is not neglected compared 
with the ion mass, but the quasi-neutrality condi
tion is retained, then the form of the equations can 
be preserved by changing only the definitions of 
the characteristic frequencies: 

002 = 4:n:ne2 (I + !!!!__) = 4:n:ne2 
00 =· eH0 (l- Zm)· = eH0 

0 m M m ' e me M me ' 

ZeH0 ZeHo 
001 = Me(1-Zm/M) = Me • 
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Obviously, Zm/M can almost always be neglected 
compared with unity. 

To analyze the oscillations, it is more conven
ient to rewrite Maxweli's equations in the form: 

"2n:: + OJ2 m . 4nOJ • v \11-- grau UIVI\l: --.-..,. =- t - 2 J. c c 
(9) 

SIMPLE CYUNDRICAL WAVES 

We locate two coordinates q1 and q2 of the lo
cally orthogonal coordinate system in a plane per
pendicular to the magnetic field, and align the 
coordinate q3 with the static magnetic field H0• 

The electric field and the current density are best 
represented in the form 

~± = ~~ ± i~z = (£1 ± i£2) F ± (ql, q2. qa; t), 

~a= EaFa (ql, q2, q3, t), 

i± = h ± ib = (h ± ij2) F :i: (ql, q2. qa, t), 

ia = iaF a (ql, q2, q3, t). (10) 

The Gothic letters indicate the variable quantities 
to distinguish them from the constant amplitudes. 

Equation (7) can be written in the variables (10) 
as: 

fa= i {ffig/4:rtffi) ~3· (12) 

We shall use henceforth a cylindrical system of 
coordinates: q1 = r; q2 = cp; q3 = z. The function 
F is sought in the form: 

'ljl=kaZ+m<p-ffit. (13) 

Here m is the azimuthal number, k1 and k3 are 
the components of the wave vector and Z desig
nates a cylindrical function. The solution that 
remains finite on the cylinder axis has the form 

where J is the Bessel function of the first kind. 
For a coaxial gap they are replaced by general cy
lindrical functions, i.e., linear combinations from 
the Bessel and Neumann functions with the same 
indices. Substitution of (11)- (13) into the expres
sion for the differential operators and use of the 
properties of the Bessel function gives: 

We see from this that Eq. (9) is satisfied for the 
selected form of the functions. Substitution of 
(10)-(18) into (9) yields a characteristic system of 
linear homogeneous equations connecting the inte
gration constants E and j, while the determinant 
of this system yields the dispersion equation. 

We shall first examine the components along the 
magnetic field. Substituting (14) in (10) and taking 
(10), (16), and (18) into account, we get 

Ea = E2k1kac2 / (kic2 + ffi~- w2 ). (19) 

It is seen directly that in the two special cases 
k1 = 0 and k 3 = 0 (axial and purely-radial oscilla
tions) the equation for E3 separates. In these 
cases there are two independent oscillation modes. 
The mode with E3 = 0 constitutes for k3 = 0 pure
ly radial magnetoacoustic oscillations and for 
k1 = 0 magnetohydrodynamic waves propagated 
along .the field. The mode with E3 =I 0 constitutes 
in the second case longitudinal plasma waves and 
in the first a transverse electromagnetic wave. 
The dispersion equation for this mode is obtained 
by equating to zero the denominator of the left 
portion of (19), and is independent of the presence 
of the magnetic field. 

In the general case of oblique propagation, the 
equation for E3 does not separate and (19) gives 
only the connection between E3 and E2 • Inserting 
(19) in (15), (16), (17), and (9), we get 

(- k2 + w2fc2) (£1 ± i£2) ± ik1 (k1£2 + kaEa) 

=- i4:rtwc-2 (h ± ij2). 

(20) 

(21) 

From (21) we can get the connection between the 
amplitudes of the electric field and current in the 
form 

where 

q = (w~- w2)/(kic2 + w~- ro2). 

From (11) we get for the same amplitudes 

(w~w/4:rt) E1=i (w;w,-w2) h+ffiffiejz, 

(w~wj4:rt) E2 =i (w;w,-w 2) j2 - wweh· 

(23) 

(24) 

(15) The system of characteristic equations (22)-(24) 
yields the dispersion equation 

(graddiv~)± = =F iki{k1E 2 +k8E 3)Jm±dk1r)ei"-, (17) 
(k2 ~~OJ2 2 - ffi;w,+ w2 ) ( 2 ~~OJ• - W;ffi, + w•)- w2w! = 0. 

c -OJ k c q-OJ2 
3 (25) 

(grad div ~)3 = - k 8 (k1E 2 + k 3E 3) J m (k1r) ei"-. (18) We note that the parameter q contains k~c2 in 
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the denominator, so that the dispersion equation is 
the second degree in k~ (or k2 ) if k~ and w2 are 
given, or in k~ if ki and w 2 are given. The 
dispersion equation does not contain m and is 
identical with the equation for plane waves, 1 if 
the direction of the propagation is assumed to lie 
in the r, z plane. 

Maxwell's equation: 

(irojc) H = curl~ 

makes it possible to find the alternating magnetic 
field H. We can then write the complete solution 
with the azimuthal number m: 

~r = i ~2 [( 1 - p) J m+t (k1r)- (1 + p) J m-dk1r)] ei<V, (2 7) 

~~= ~2 [(1-p)Jm+t(k1r)+(l +p)Jm-l(kir)]ei<V, (28) 

~z=Ea!m(klr)ei<V, (29) 

j,= ~ [(1-s)Jm+I(k1r)-(1 +s)lm-I(klr)]ei<l>, (30) 

j'P =- i ~ [(1 - s) J m+1 (k1r) + (1 - s)J (11·-dkir)] ei<V. (31) 

Here 

(32) 

h is related to E2 by formula (22). Furthermore, 

(33) 

- £2 kac k ) ) J k ) · H,=-2-[(q-p)Jm+d 1r +(q+p m-d lr]e'"', 
w (34) 

H~ =i ~2 kac [(q- p)Jm+1 (k1r) + (q- P- 2)Jm-l (k1r)] ei<V, 
w ~~ 

Hz= ipE2 klc J m (klr) ei<V. (36) 
w 

Here k1 = kr and k3 = kz are the radial and axial 
wave numbers. 

We note that the radial magnetic field Hr is 
expressed in terms of the electric field compon
ents ~z and ~cp in the form 

(37) 

We shall call the complex solutions of type (27)
(36) simple cylindrical waves. The real part of 
such a solution directly gives directly a helical 
traveling wave. Because of the gyrotropic plasma 
properties, the natural oscillations have the form 
of standing waves along the axis but are traveling 
waves in azimuth. 

Natural oscillation with given k~ can be ex-

pressed as the sum or difference of the two 
simple cylindrical waves with axial wave num
bers + k3 and - k3 • It is convenient to set the 
origin at a node of the standing wave and to ex
press the natural oscillation as a difference of 
simple cylindrical waves. In this case, since the 
first power of k 3 enters only into formulas (19) 
(35) and (36), we have 

From such formulas (27)-(36) it is apparent 
that the radial distributions of the amplitudes are 
different in oscillations with azimuthal numbers 
+m and - m. This discloses the gyrotropic prop
erties of the plasma; this is precisely why the 
natural oscillations of the plasma should be repre
sented by azimuthal traveling waves. 

In deriving all the previous formulas we have 
neglected only the non-linearity, thermal motion 
and collisions. Otherwise, the formulas are gen
eral and applicable for arbitrary frequencies. In 
what follows we shall examine a number of very 
simple cases, with special attention being directed 
to low frequencies, where the ion motion is signifi
cant, i.e., to magnetoacoustic and magnetohydro
dynamic oscillations. 

All the results cited can be also obtained from 
the general theory of propagation of electromag
netic waves in gyrotropic media8- 11 by substituting 
the dielectric tensor of the plasma. However, it 
is necessary in this case to express not the field 
in terms of the current, but the current in terms 
of the field, which results in a rather cumbersome 
derivation. For the cases of specific interest to 
us, the method given above is the simplest and 
clearest. 

EXACT BOUNDARY CONDITIONS 

The natural oscillations of a bounded plasma 
are described by the obtained solutions of the 
equations if they satisfy the boundary conditions. 
The electromagnetic fields as well as the plasma 
motion are relevant in this respect and, there
fore, the boundary conditions may generally be 
both electrodynamic and hydrodynamic. 

The hydrodynamic boundary condition must be 
imposed when the plasma comes into direct con
tact with the solid walls. Then the normal com
ponent of the mass velocity must vanish at the 
wall surface. In a cold plasma, according to 
formula (6), the velocity along the magnetic field 
is also equal to zero. Therefore, the hydrody
namic boundary condition is imposed only on the 
lateral surface of the plasma cylinder. It appears 
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from (6) that if this surface comes into direct con
tact with the solid walls, then the following condi-
tion must be in effect on it: 

(39) 

where Ro is the radius of the plasma cylinder. 
The electrodynamic boundary conditions are 

that the normal component of the alternating mag
netic and the tangential components of the electric 
field at the plasma surface have at all times the 
same values as in the surrounding medium. At the 
ends of the cylinder the conditions are imposed on 
H ~ and ~ For solutions of type (38), values z• r q:r 
of k3 satisfying such conditions can always be 
found. In particular, if the plasma cylinder of 
length L is bounded on the ends by ideally conduc
ting walls, then the boundary conditions at the ends 
give 

k3 = lnj L, (40) 

where l is an integer. 
It is apparent from (38) t~at the S_8lution with 

l = 0 contains only ~z, jz, Hr and Hcp· This 
special solution, with k3 = 1} and E3 =1- 0 consti
tutes, as we have already pointed out, a transverse 
electromagnetic wave polarized along the magnetic 
field and propagated in the same manner as without 
a field. For the oscillations of interest to us, 
which depend on the magnetic field, and especially 
for all the low-frequency oscillations, the eigen
values k3 correspond to values of l from 1 to 
oo in (40). 

Considerably more complex are the electrody
namic boundary conditions on the lateral ~rface of 
the cylinder. Here, they are imposed on Hr, ~z• 

and~ cp,· The connection (37) between these values 
makes it possible in the simplest cases to reduce 
the three conditions to two. 

It iS' seen from (27) and (28) that the radial de
pendences of ~z and ~cp are expressed by various 
combinations of Bessel functions. Therefore, one 
simple cylindrical wave, generally speaking, cannot 
satisfy the boundary conditions; a linear combina
tion of two simple cylindrical waves with different 
k1 is required for this. 

Since the dispersion equation is of the second 
degree in k21 two such cylindrical waves canal-

' 2 2 ways be constructed for given w and k3. If k1 
is imaginary for one of these solutions, their 
linear combination can still satisfy the boundary 
conditions for the natural oscillations. In a region 
where both values of k1 are imaginary, however, 
only forced oscillations are possible. 

APPROXIMATE BOUNDARY CONDITIONS 

The problem of natural oscillations makes 
sense if the plasma is located inside a closed 
cavity with ideally conducting walls, for example, 
coaxially inside a metallic cylinder. Then an ex
act condition for the lateral surface will require 
matching to the oscillations of a coaxial dielec
tric gap. 

The radial functions for a coaxial gap are 
combinations of Bessel and Neumann functions of 
the argument ker. Here ke is the external radial 
wave number, determined from the relationship 

(41) 

A.o =c/w is the vacuum wavelength and A.3 = ljk3 is 
the longitudinal wavelength: If the thickness of 
the gap is small compared with A.0 and A.3, the 
variation of the fields in it may be neglected. Then 
the boundary condition on the plasma surface can 
be assumed given in the following form: 

(42) 

where Ro is the radius of the plasma cylinder. It 
is apparent from (37) that the boundary condition 
for Hr is thus satisfied automatically. On the 
other hand, for small k3 and low frequencies, <fz 
may, according to (19), be neglected. Then the 
conditions at the lateral surface of the plasma cy
linder will have the form 

(43) 

The second condition pertains only to cases when 
the plasma surface is in direct contact with the 
solid walls. In case of a free plasma surface the 
approximate boundary condition reduces to 

(44) 

where an are the roots of the right half of (28). 
One can speak of oscillations of a plasma confined 
by a free surface only to the extent that the peri
ods of the considered oscillations are small com
pared with the skin times. 

MAGNETOACOUSTIC REGION 

For frequencies which are low compared with 
ionic cyclotron ones, the gyrotropic properties of 
the plasma do not affect the oscillations. We shall 
call this frequency region the magnetoacoustic re
gion. From Eqs. (26)-(30) two independent os
cillation branches are obtained for it. For the 
first: 

(45) 
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for the second: tion (25) in powers of X and Y, we can set it in 

(46) 
the symmetric form: 

This approximation is valid when 
:Z2oX2 + a10x + a11xy + ao1Y + ao2Y2 = 0, 

a20 = (1- Q)(A + 1-Q)- BQ, a10 = BQ- A- 1 + Q, 

kic2 ~w~, 

kk2 ~W~. 

(47) a11 = A(1- Q) +(A- 2Q) [BQ -(1- Q)2] jQ, 

(48) a01 =(A-Q)(1-Q-BQ)jQ, 

Newcomb12 calls the first branch the TE mode, and 
the second the TEM mode. 

LINEAR DENSITY OF THE ELECTRONS 

For small k3, the magnetoacoustic region is 
determined by inequality (47). We substitute the 
plasma frequency and express k1 from the bound
ary condition, written in the form of (44). Then 
(47) will have the form 

(49) 

The quantity 

(50) 

contained in (50) has a simple meaning. This is 
the total number of electrons along the length of a 
cylinder equal to the classical electron radius. 
At the suggestion of S. E. Braginskil, we call II the 
linear density of the electrons. 

We shall call the following quantity, 

(51) 

which depends on the boundary conditions, the ef
fective linear density of the electrons. 

Now inequality (49) acquires the following 
meaning: the magnetoacoustic region is realized 
when the effective linear density of the electrons 
is large. 

DISPERSION EQUATION IN DIMENSIONLESS 
VARIABLES 

In going over to dimensionless quantities, 
the dispersion equation (25) can be given in a 
form containing two dimensionless parameters: 

B = w,fw; 

and the dimensionless variables 

The parameter A depends only on the velocity 
uA; it is equal to the square of the index of re
fraction of the plasma in the magnetoacoustic 
region. The parameter B depends only on the 
nature of the gas, and is always large ( B ~ M/m). 

Expanding the left side of the dispersion equa-

(52) 

The index of refraction of the plasma tends to 
infinity when the highest-order coefficients a20 

or a02 vanish. The coefficient a 02 vanishes at 
frequencies close to the electron and ion cyclo
tron frequencies. a20 vanishes at two frequencies 
which, after Hurwitz, 8 are called hybrid. The 
higher one is close to the plasma frequency and the 
lower one is determined by the relationship~ 

(53) 

LOW-FREQUENCY OSCILLATIONS OF A LONG 
CYLINDER 

We shall examine a case when an approximate 
expression for the lower natural frequencies can 
be obtained in explicit form. We set in (25) 

w~w2f (k~c2q- w2) ~ ffi;ffi,- w2 • (54) 

Obviously, this approximation is suitable for not 
too high k3; we shall therefore call it the long
cylinder approximation. A special case where ap
proximation (54) is inapplicable is the TEM mode 
in a magnetoacoustic region. Otherwise, its ap
plicability region is rather extensive: in particu
lar, it is always applicable when k~c2q is close to 
w2 or when w2 is close to WiWe• Moreover, by 
setting: 

(55) 

we get from (25) 

2 1 + (w,lw;) k~c2 I (w~ + kic2) 

00 = ffi;ffie 1 + (Wolke)• + (w,lw0 ) 2 (56) 

If k3 « k1, we can introduce the effective linear 
density of the electrons II according to (51) and 
write (56) in the form 

1 +(IT*+ 1)-1 (w,lw;)(ks/kl)2 

w2 ~w-w • 
~ ' e II*+ 1 + w; I w~ (57) 

In the limit of a very large linear electron density, 
(57) goes into expression (45) for the magneto
acoustic region. But this limit is attained only 
when 

(58) 
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which, for not too small k3, is a very stringent 
requirement. If the less stringent condition is 
imposed: 

n·~ I, ll*~(roe/ro0)2 , 

then (57) will give: 

ro2 ::::::::; (ki + k~roe / ll*roi) u~. (59) 

Here the natural frequency is almost as if the prop
agation had an Alfven velocity across the field and 
a velocity ue/Y'rr* along the field, w~re ue is the 
"electron Alfven velocity" which is M/Zm times 
larger than the Alfven velocity. 

(60) 

When k~/k~ II* « we/Wi the natural frequency no 
longer depends on the ion mass and becomes in
versely proportional to the length of the cylinder. 
This region can be called pseudo-magnetohydrody
namic. 

EXCITATION OF THE OSCILLATIONS 

The forced plasma-cylinder oscillations are 
best analyzed by expansion in a series of patural 
oscillations. When the forcing frequency approxi
mates one of the natural frequencies of the cylin
der, the corresponding term of the expansion 
sharply increases and resonance occurs. 

We consider the simplest case of excitation. 
Let the plasma be surrounded by an ideally
conducting metallic cylinder, the lateral surface of 
which has a dielectric cut along the generatrix. A 
sinusoidal external voltage of given frequency w is 
applied to this cut. By assuming the cut to be in
finitesimally thin we may write the boundary con
dition in the form: 

where V is the voltage on the cut. We assume 

and expand the o function in a Fourier series 

_.( ) _ 1 ~ im'!; 
u cp -21iLie . 

-oo 

(62) 

(63) 

Because of the gyrotropic properties of the 
plasma, waves with positive as well as negative 
azimuthal numbers must be independently present 
in the expansion. 

The solution for the forced oscillation is found 
in the form: 

00 

a''P = ~ CmZm (k1r) e1<1>, (64) 
-00 

where Zm is a function of the form (28) or a 
linear combination of two such functions; k1 satis
fies the dispersion equation for given w and k3, 

but does not satisfy the boundary conditions for 
a: cp· For low-frequency oscillations, an approxi
mate boundary condition can be used by consider
ing that (61) is given not at tlie inner radius R 1 
of the metallic housing, but at the radius R0 of 
the plasma cylinder. Then 

(65) 

When k1R0 approaches one of the roots of the right 
side of (28), one of the terms of the series in (73) 
sharply increases. Under these conditions reso
nances should be observed, accompanied by an 
effective penetration of the alternating field into 
the plasma. 

Other excitation schemes are considerably 
more difficult to calculate, since it is necessary 
to expand not only in azimuthal, but in radial 
functions. The qualitative conclusion that reso
nance phenomena are present is general. 

MAGNETOACOUSTIC RESONANCE IN A PLASMA 

The dispersion equation (25) or (52) for a cold 
plasma is of the fifth power with respect to the 
square of the frequency. Therefore, generally 
speaking, up to five different resonance frequen
cies correspond to given values of k1, k3 and m, 
but these frequencies differ in character. 

For a cold unbounded plasma there are also 
five characteristic frequencies: 2 cyclotron, 2 
hybrid, and 1 plasma. Often these frequencies 
are called natural or resonant. In this case the 
term resonance is not always unambiguously de
fined. 

Near cyclotron and hybrid frequencies, one of 
the indices of refraction of the plasma tends to 
become infinite on passing from positive to nega
tive values. This phenomenon is similar to 
anomalous dispersion in optics. 

The tendency for the index of refraction to be
come infinite indicates that the phase velocity 
vanishes. Near this point, thermal motion can no 
longer be neglected. If the phase velocity is small 
and there is even a slight thermal motion in the 
direction of propagation, there will always be par
ticles for which the thermal velocity component in 
this direction will be close to the phase velocity. 
These particles move in phase with the wave and 
irreversibly draw energy from it. In other words, 
it can be said that these particles are in reso
nance with the wave. Examples of such a single-
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particle resonance are ion and electron cyclotron 
resonances. 

Single-particle resonance is associated with the 
conversion of oscillation energy into energy of 
other degrees of freedom of the plasma motion 
(for example, cyclotron rotation). Therefore, 
single-particle resonance results in a unique en
ergy absorption not associated with collisions and 
oscillation damping. It can be stated that if account 
is taken of even the slightest thermal motion, then 
the imaginary part of the index of refraction must 
tend to infinity together with the real part. 

For a bounded plasma, a phenomenon of a com
pletely different nature takes place- collective 
resonance at the natural frequencies of the plas
ma volume. These natural frequencies have been 
examined above; they depend on the plasma con
centration and on the boundary conditions. Res
onance at the natural frequencies of a bounded 
plasma results, generally speaking, in the pene
tration of alternating fields inside the plasma. 

However, if the geometric dimensions of the 
plasma volume are small compared with the 
vacuum wavelength, then high indices of refrac
tion are required for resonance at the natural 
frequencies. Therefore, certain of the natural 
frequencies of a plasma volume are in many 
cases close to the anomalous dispersion frequen
cies, i.e., the collective resonance practically co
incides with the single-particle resonance.6 

If the natural frequency of a plasma volume 
coincides with the single-particle resonance, then 
the plasma cannot be made to oscillate at this 
frequency, because of specific absorption; i.e., it 
is impossible to produce in the plasma large alter
nating field amplitudes. We call such resonances 
absorption resonances; they include the ion and 
electron cyclotron resonances. They result only 
in surface heating of the plasma, i.e., the latter is 
opaque to the corresponding frequencies. 

Anomalous dispersion type resonances consti
tute a larger group and include all the resonances 
close to frequencies where the index of refraction 
tends to infinity, i.e., resonances at hybrid as well 
as at cyclotron frequencies. All these resonances 
may be called trivial, since their frequencies are 
close to the natural frequencies of an unbounded 
plasma. 

Natural-frequency resonances that depend on 
the boundary conditions, i.e., on the geometry and 
the plasma volume dimensions, are characteristic 
of a bounded plasma. These resonances are not 
due to specific absorption; the phase velocity is 
sufficiently large and assures effective penetra
tion of the alternating fields inside the plasma. We 
shall call such resonances build-up resonances. 
The most important of them is the magnetoacous
tic resonance, which is produced when the linear 
density of the electrons is large. 

The use of build-up resonances and, particu
larly, of magnetoacoustic resonances, in contrast 
to the ordinary surface effect of high frequency 
fields (skin-effect), makes possible a deep penetra
tion of the alternating field inside the plasma. 

I thank V. P. Demidov for valuable consulta
tions. 
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