LONGITUDINAL POLARIZATION OF β ELECTRONS FROM Au¹⁹⁸

A. I. ALIKHANOV, G. P. ELISEEV, and V. A. LYUBIMOV

Submitted to JETP editor April 30, 1960

J. Exptl. Theoret. Phys. (U.S.S.R.) 39, 587-588 (September, 1960)

The ratio of the polarization of electrons from Au^{198} and Tm^{170} has been measured for energies of 145 kev and 390 kev. This ratio is equal to 0.8 ± 0.05 at 145 kev; a value 1.07 ± 0.08 has been obtained at 390 kev.

MEASUREMENTS of the longitudinal polarization of β electrons from different elements carried out during the last few years show that in a region in which the β -electron energies are not too low the longitudinal polarization is close to -v/c for all elements investigated. An exception is RaE, for which a deviation from the above value^{1,2} of the longitudinal polarization was expected, in view of the fact that its β spectrum differs from the Fermi shape. This deviation was observed shortly afterwards and studied in detail in several experiments.

In the case of Au¹⁹⁸, some authors observed complete polarization of electrons (P = -v/cchiefly at medium and high energies, 3,4 and other authors, a considerably smaller polarization, at medium and low energies.⁵ We have repeatedly obtained (in reference 4 and earlier) values appreciably less than -v/c for the polarization of low-energy electrons from Au¹⁹⁸. But since the apparatus employed was not sufficiently adapted to the strong γ background accompanying the Au¹⁹⁸ β decay, we were obliged to restrict the measurement of the polarization of electrons from Au¹⁹⁸ only to energies higher than the maximum energy of the electrons efficiently generated in the apparatus by γ rays from the source. Otherwise, it would have been very difficult in principle to take into account the distortion of the results by the electron background from γ rays.

In the present work, in order to determine the value of the polarization of low-energy electrons from Au¹⁹⁸, we used an apparatus constructed on the same principle as that in reference 4, but considerably improved and adapted to work with β sources having a strong γ background.

The polarization was measured in two energy regions — in the low-energy region (145 kev) of interest to us and, for comparison, in the high-energy region (390 kev), where, according to our previous measurements,⁴ the polarization is equal to -v/c.

The measurements were carried out by the relative method used earlier.² Identical samples of Au^{198} and Tm^{170} served, in turn, as the source in the apparatus. The corrections which had to be applied to the measured values were mainly the same for Au^{198} and Tm^{170} samples. Therefore, they compensated each other and were practically eliminated from the relative value of the longitudinal polarization of electrons from Au^{198} .

For β electrons from Au¹⁹⁸ with mean energy of 145 kev (interval width about ±60 kev), the value of the longitudinal polarization relative to Tm¹⁷⁰ was P_{Au}/P_{Tm} = 0.80 ± 0.05. In this value, the azimuthal asymmetry of Au¹⁹⁸ was increased by + 1.8% to compensate for the action of 76, 126, 145, 147 kev unpolarized conversion electrons emitted by Au¹⁹⁹, which is formed during the preparation of the source in the reactor from Au¹⁹⁷ through Au¹⁹⁸ as a result of the capture of two neutrons.⁶ The amount of Au¹⁹⁹ was determined by a calculation based on the irradiation time of the Au¹⁹⁷ sample in the reactor, the thermal neutron flux density, and the respective capture cross sections.

The relative longitudinal polarization of 390 kev electrons (interval width of the order of ± 100 kev) from Au¹⁹⁸ turned out to be $P_{Au}/P_{Tm} = 1.07$ ± 0.08 , in agreement with the previous measurements. Here, a correction of + 8% was introduced into the azimuthal asymmetry of Au¹⁹⁸ in connection with the presence of conversion electrons from the 411-kev γ line of Au¹⁹⁸. The contamination from internal conversion electrons in the stream of β electrons which experienced scattering by 90° on the scatterer—transformer was determined by direct measurement on a β spectrometer.

Recent measurements of Spivak and Mikaélyan⁷ gave for 240-kev electrons from Au¹⁹⁸ a polarization equal to $-(0.89 \pm 0.025)$ v/c.

Analysis of the possible reasons for the devia-

tion of the value of the longitudinal polarization of Au^{198} from -v/c was given by Geshkenbein and Rudik.⁸ They showed that in heavy nuclei, one should expect, for the first-fcrbidden transitions in the β spectrum regions which differ from the Fermi shape, a deviation of the value of the longitudinal polarization of electrons from -v/c, since the shape of the β spectrum and the value of the longitudinal polarization are determined by the same combinations of the same parameters. The β -electron spectrum of Au^{198} , according to the data presented in the survey in reference 9, has a Fermi shape for electrons of energy greater than 300 kev and appreciably differs from a Fermi shape for electrons of lower energy.

¹Alikhanov, Eliseev, and Lyubimov, JETP 35, 1061 (1958), Soviet Phys. JETP 8, 740 (1959).

²Alikhanov, Eliseev, and Lyubimov, Nuclear Phys. **13**, 541 (1959).

³ Benczer-Koller, Schwarzschild, Vise, and Wu, Phys. Rev. **109**, 85 (1958); Lipkin, Cuperman, Rothen, and de-Shalit, Phys. Rev. **109**, 223 (1958); Geiger, Ewan, Graham, and Mackenzie, Bull. Am. Phys. Soc. **3**, 51 (1958). ⁴Alikhanov, Eliseev, and Lyubimov, JETP 34, 1045 (1958), Soviet Phys. JETP 7, 723 (1958).

⁵ Vishnevskiĭ, Grigor'ev, Ergakov, Nikitin, Pushkin, and Trebukhovskiĭ, Сб. Ядерные реакции при малых и средних энергиях (Collection: Nuclear Reactions at Low and Medium Energies), U.S.S.R. Acad. Sci. Press 1958, p. 363; Turner, Gard, and Cavanaugh, Bull. Am. Phys. Soc. 4, 77 (1959).

⁶R. D. Hill and J. W. Mihelich, Phys. Rev. 79, 275 (1950).

⁷ P. E. Spivak and L. A. Mikaélyan, Материалы X Ежегодного совещания по ядерной спектроскопии (Materials of the Tenth Annual Conference on Nuclear Spectroscopy) Moscow, 1960; JETP 39, 574 (1960), Soviet Phys. JETP 12, 000 (1961).

⁸B. V. Geshkenbeĭn and A. P. Rudik, JETP 38, 1894 (1960), Soviet Phys. JETP 11, 1361 (1960).

⁹R. M. Steffen, Proc. Rehovoth Conf. Nucl. Structure, 1957, North-Holland Publishing Co., Amsterdam, 1958, p. 426.

Translated by E. Marquit 115