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The problem of the Knight shift in superconductors of small size is discussed. It is shown 
that the derivation of a finite value of the shift at absolute zero obtained in the papers of 
Schrieffer3 and of Anderson4 is incorrect. 

RECENTLY a number of papers1- 4 has been de
voted to the theory of the so-called Knight shift in 
superconductors, i.e., the change in the nuclear 
resonance frequency as compared to dielectrics. 
The aim of these papers is to explain the experi
mental data obtained by Reif for superconducting 
emulsions. 5 

As is well known, the cause of the Knight shift 
in metals is the paramagnetism of the conduction 
electrons. Because the electron wave function is 
anomalously large in the neighborhood of the nu
cleus, the magnetization of the electrons changes 
the magnetic field acting on the nucleus. The dif
ference between the effective and the external field 
has the following form 

tlH = (8rr.j3Nat ) I 'I' (0) 12 xH' (1) 

where II/! ( 0) 12 is the probability density of finding 
the electron at the position of the nucleus, Nat is 
the number of atoms per unit volume, x is the 
paramagnetic susceptibility of the electrons, and 
H is the external field. 

Since the conduction electron states are altered 
in superconductors, one should expect a change in 
the magnitude of the Knight shift. Formula (1) is 
still valid in this case, with the susceptibility evi
dently undergoing the principal change in com pari
son with the normal metal. The observation of 
this effect is made difficult by the fact that the 
field does not penetrate deeply into a bulky super
conductor. A homogeneous field can be produced 
only in superconductors of dimensions much 
smaller than o, the penetration depth for a static 
field. It is just for this reason that an emulsion is 
utilized in Reif's experiments. 

In Yosida's paper1 a bulky superconductor in a 
homogeneous field was considered. Such a formu
lation of the problem does not correspond to actual 
experimental conditions. In order to be able to 
completely leave out of account the effect of the 

boundary conditions and of the inhomogeneity of 
the field it is necessary that the depth of penetra
tion of the field and the dimensions of the sample 
should be large compared to the principal parame
ter of the theory ~ 0 - tiv /kT c• the characteristic 
correlation radius. Only in such a case could 
Yoshida's results, obtained for an infinite super
conductor, be used for the interpretation of Reif's 
experiments. However, it is well known that for 
the majority of superconductors o is considerably 
smaller than ~ 0• From the formal point of view 
the calculations of the susceptibility in reference 1 
for a bulk sample are of course correct, since in 
order to calculate the coefficient of proportionality 
between the magnetic moment and the field (as
suming the latter to be homogeneous) it is not nec
essary to solve the problem of the penetration of 
the field into the sample. We are here simply dis
cussing the fact that actually the field remains 
homogeneous at distances smaller than o « ~ 0 • 

The attempt by Martin and Kadanoff2 to take into 
account the inhomogeneity of the field in the sample 
cannot lead to any improvement, since such an in
homogeneity increases first of all the line width. 

The problem can be formulated quite correctly 
for superconducting alloys. If the concentration 
of the impurities is sufficiently great then the role 
of the correlation parameter is played by the mean 
free path l. Under these conditions the situation 
described by London ( o » l) arises in the super
conductor, and it becomes possible to regard the 
field in the sample as homogeneous. 

As has been pointed out earlier, 7•8 actual sam
ples of small dimensions are conglomerates of 
crystallites with dimensions of the order of or 
smaller than the sample dimensions. Because of 
this, such samples have properties which are 
rather close to sup~rconducting alloys with an ef
fective mean free path of the same order of mag
nitude. The paramagnetic susceptibility of super-
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conducting alloys has been recently investigated by 
Schrieffer3 and by Anderson. 4 In particular, in 
these investigations the conclusion was reached 
that the presence of impurities leads to a finite 
Knight shift at T = 0 which is in agreement with 
the extrapolation of Reif's results to T = 0. In this 
note it will be shown that such a conclusion is er
roneous. 

The method for the study of superconductors 
containing impurities has been developed by us 
previously. 7•8 In the present case it is necessary 
to evaluate the spin magnetic moment of the system 
of electrons in a homogeneous magnetic field. It 
is given by 

M=[L0 Sp(exp( Q+N;-it )<P: (x)a"~tj>~(x)], (2) 

where JJ.o is the Bohr magneton and CJ are the 
Pauli matrices. The Hamiltonian for the interac
tion between the electron spins and the magnetic 
field has the form 

if1 = -[.to~ tJ>: (x) (a"~ H) tj>!l(x) d3x. (3) 

By utilizing the techniques used in quantum field 
theory at finite temperatures8•9 and by restricting 
ourselves to terms of the first order in H we ob
tain 

1/T Q + N _ !It 
M=-p-~ lim 1d-ry~d3 ySp(exp( ; ") 

-r'~-r+O j j ' 
X 1-+X 0 

X T, (tj>~ (x) tJ>.:;- (y) tl>s (y) tJ>: (x')) a"~ (ays H)] (4) 

In this formula the operators 1/J are not free, but 
include the interaction with the impurities: 

:iez = ~ tJ>: (x) tPa (x) ~ V (x- Xa) d3x, (5) 
a 

where xa is the position vector of the impurity 
atom. 

Further calculations have been carried out in 
complete analogy with the way this was done in 
references 7 and 8. It was shown there that aver
aging over the coordinates of the impurity atoms 
leads to the introduction of a special diagram 
technique. Each impurity line in a diagram arises 
from averaging two factors corresponding to scat
tering by one of the impurity atoms. It is suffi
cient to retain only the non-intersecting lines in 
order to obtain a result which differs from the 
correct one by small terms only. If we apply this 
procedure to formula (4) then the calculation of 
the magnetic moment obviously reduces to the 
evaluation of the sum of loops with two spinor ver
tices C!a{3 and with all the nonintersecting impurity 
lines. 

In averaging over the impurity coordinates we 
must take into account the fact that, for example, 
G ( x, y ) G ( y, x ) is not equal to G ( x, y ) • G ( y, x ) . 
In the opposite case this expression would simply 
be given by 

G0 (x - y) G0 (y- x) exp (-! x- y I I l), 

where l is the mean free path, while G0 ( x - y ) 
is the Green's function for the pure superconduc
tor. This incorrect assumption is the one made 
in Schrieffer' s note3 and leads to an erroneous 
result. 

If we denote by II~a(p, wn) the Fourier com
ponent of 
~ . . 
~d-ry~ d3y Sp [exp ( Q + N; -!Ito) 
0 

XT ~ (tPB (xH:; (y) 4s (y)tJ>;- (x')) aysl, 

we can easily relate this quantity by means of ap
propriate equations to Fourier components of 
three other similar quantities: 

where 

~ d4 y [tj>~ (x) 4~ (y) 4s (y) (tj> (x') g)"] ays, 

~ d4 y [(gtj>+ (x)~ 4~ (y) 4s (y) ~" (x')] ays, 

~ d4 y [(gtj>+ (x)) ~y~ (y) 4; (y) (4 (x') g)"] ays, 

i=( 01)· 
-1 0 

The magnetic moment is expressed in terms 
of n~a by means of the relation 

M == -1;.~ a a~ T ~ (2rrr3 ~HIT~" (wn, p) d3 p, (6) 
n 

where wn = 1rT (2n + 1). 
Since all these calculations corespond com

pletely to those carried out in reference 7, we 
shall not dwell on the solution of these equations, 
and shall simply state the answer: 

X =~ 21;.~ (mpo I 2rr 2) (N n IN) = Xn N n I N, ( 7) 

where Xn is the susceptibility of the normal metal, 
and Nn/N is the ratio of the number of "normal" 
electrons to the total number of electrons given by 

N n 1 r sde . 
N;, = 2T .\ f e2 - A 2 (T)cosh2(e;2T) ( 8) 

~(T) 

The function Ns = N- Nn determines the penetra
tion depth for a pure superconductor of the London 
type. 

Formulas (7) and (8) agree with Yosida's re
sult1 obtained formally for the case of a bulk of 
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pure superconductor in a homogeneous field. This 
is explained by the fact that these formulas do not 
contain the mean free path. We also note that in 
the case considered here l » 1/p0 the size of the 
gap ~ ( T) agrees with the same quantity for the 
case of a pure superconductor. 

From our results it follows, in particular, that 
for T = 0 the susceptibility x vanishes, i.e., that 
no Knight shift should be observed. This conclu
sion is perfectly natural. In its ground state the 
superconductor has no magnetic moment, and the 
excited state is separated from the ground state 
by an energy gap. This applies not only to pure 
superconductors, but also to alloys with nonmag
netic impurities. Nevertheless, this result con
tradicts Reif's experiments, 5 which, as has been 
noted by Yosida, give values of x larger than those 
given by formula (7). The quantity x does not 
vanish when we extrapolate to T = 0. 

In this connection it is necessary to subject to 
some criticism the interpretation of Reif' s experi
ment. As we have already mentioned, in these ex
periments emulsions were used, i.e., an aggregate 
of small spherical samples of different sizes. Ap
parently at the present time this is the only method 
for investigating nuclear resonance in supercon
ductors, and it can give rise to no objections if 
the particles are sufficiently small. In this case 
they had a diameter d on the average equal to one 
third of the penetration depth. However, the dis
tribution of particles with respect to size is fairly 
broad, and since the effectiveness of individual 
particles is proportional to their volume the most 
important role is played by the large particles, 
even though they are less numerous. In such par
ticles the field is inhomogeneous, which is in com
plete agreement with the large width of the reso
nance line obtained by Reif at low temperatures. 

One other essential circumstance should also 
be noted. As is well known, the transition from 
the superconducting to the normal state in particles 

of dimensions smaller than the penetration depth 
is a phase transition of the second kind for which 
the superconducting "gap" in the spectrum van
ishes in a continuous manner. This means that 
particles for which the external magnetic field is 
only slightly lower than the critical value (were
call that He ,.... 1/ d) will be very close in their 
properties to the normal metal right down to very 
low temperatures. From this it follows that in the 
given external field (which, incidentally, was ap
proximately equal to 1000 gauss) the particles 
cannot be separated into completely normal ones 
and totally superconducting ones with correspond
ing resonance frequencies, but give rise to various 
intermediate values of the resonance frequency. 

In view of the foregoing, it appears to us that at 
the present time it is premature to speak of the 
existence of a contradiction between theory and 
experiment. 

In conclusion we express our gratitude to Aca
demician L. D. Landau for discussion of this work. 
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