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The possibility of determing the magnetic moment of the "t> hyperon by comparing the decays 
'2fl - A0 + 2y and '2fl- A0 + y is examined. 

BESIDES the known decay 

~o-+Ao + 1' 

there must also occur the decay 

(1) 

(2) 

The present paper is devoted to an estimate of the 
probability of the decay (2). As will be shown be
low, the ratio of the probabilities of the decays 
(2) and (1) is very small ( ~ 10-6) and depends 
strongly on the values of the magnetic moments of 
the A and ~ hyperons. The value of the magnetic 
moment of the A0 hyperon will apparently be de
termined in the near future by measuring the spin 
flip of the A0 hyperon in a strong magnetic field. 
This method cannot be applied in the case of the 
~0 hyperon, however, because of the short lifetime 
of the latter. Using isotopic invariance, one can 
find the magnetic moment of the ~0 hyperon from 
the known relation 2p.~0 = ILL/ + p.g-, which was 
first obtained by Marshak, Okubo, and Sudarshan, 1 

if the magnetic moments of the ~- and L/ hy
perons are known. Below we shall discuss the 
possibilities of a direct measurement of the 
magnetic moment of the ~0 hyperon using the 
decay (2).* 

The process (1) is described by the Feynman 
graph of Fig. 1; the circle in this graph represents 
the totality of the virtual strong interactions. The 
matrix element corresponding to this graph has 
the form 

(3) 

where the coefficient p. may be called the mag
netic moment of the transition ~- A; u1 and u2 
are the spinors of the ~ and A hyperon, respec
tively; e: and k are the four-vectors of the 
polarization and the momentum of the photon 
(k = k0y0 - ky, where the y are the Feynman ma
trices ) . The form of the operator 0 depends on 

*In this connection it is also of interest to investigate the 
internal bremsstrahlung which accompanies the production of 
~o hyperons. 

FIG. 1 

the relative parity of the ~ and A hyperons, which 
we shall denote by P~A: If P~A = - 1, we have 
0 = y5 = iy0y1y2y3; if Pu = + 1, we have 0 = 1. 
The probability of the decay (1), calculated with 
the help of the matrix element M1, is independent 
of Pu and is equal to* 

(4) 

where D. = m~ - mAo ~ 76 Mev (here and in the 
following we neglect terms of order D./m~ com
pared to unity). Assuming that p. = e/ 2m1T, where 
m1T is the mass of the 1T meson, we obtain from 
formula (4) T = 1/w1 ~ 4 x 10-21 sec; if we choose 
p. = e/mp, then T ~ 4.5 x 10-20 sec. 

Let us now turn to the decay (2). It is described, 
in its most general form, by the graph of Fig. 2. 
The box in this graph represents symbolically the 
set of all graphs which give a contribution to the 
decay (2). In the following we shall consider only 
a few of these graphs (Fig. 3, a and b) which are 
believed to give the most important contribution. 

The emission of one of the photons in these 
graphs is, as before, due to the interaction of 
Fig. 1 (transition ~- A); the emission of the 
other photon is connected with the magnetic mo-

*We use a system of units in which 11: = c = 1 and 
e2 = 1/137. In the usual units 1/m77 = 4. 7 x 10-•• sec. 
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FIG. 3 

ment of the ~0 hyperon IJ.t (Fig. 3a) and the mag
netic moment of the A0 hyperon JJ. 2 (Fig. 3b). 

The graphs of Figs. 3a and 3b differ from the 
remaining graphs symbolically shown in Fig. 2 
in that the energy dependence of the emitted 
photons is different. This is connected with the 
presence of pole terms* in the graphs of Fig. 3 
which give contributions which are inversely pro
portional to the energy of the photon ( ~ 1/ ~). 
The remaining graphs contain, besides the term 
~ 1/ ~. a term of order ....., R 0 , where Ro is a 
measure of the size of the radiating region 
( 1/mrr > R0 ~ 1/mp). If the mass difference of 
the ~ and A hyperons were so small in com pari
son with the mass of the 7T meson that the in
equality R0~ « 1 were fulfilled, the graphs 3a 
and 3b would, then, definitely give the most im
portant contribution. In actuality, ~/m7r ::::; 1J2, 
and the question whether the graphs 3a and 3b 
are the basic ones must really be decided by 
putting in specific numbers. This conclusion is 
confirmed by the computation of the contribution 
of the graph of Fig. 4 with a radiating region of 
an effective size of the order ....., 1/m'Tr (see Ap
pendix II). 

The matrix element corresponding to the sum 
of the graphs 3a and 3b, symmetrized with re
spect to the photons, is equal to 

M2= [J.(J.1u20 e2k2 -h -h-- e1k1 + e1k1 h h e2kz u1 
- [hh 1 hh h h 1 hh J 

Pl- k1- m1 Pl- kz- m1 

+ (J.(J.zUz ·[ezkz h hi el'kl + el'kl h A 1 ezkz] Oul. 
p2+ k 2- mz Pz+ k1- mz (5 ) 

Here k1, k2 and e1, e2 are the momenta and the 
polarization vectors of the photons. 

The total probability for the decay (2), calcu
lated with the help of M 2, is equal to (see Ap
pendix I) 

*For a detailed discussion of the role of the pole tenns in 
the emission of quanta of small energy, cf. the paper of Low! 

FIG. 4 

w;- = (2~5/S~t) p.2 (p.~ + p.~ + i p.1p.2), (6) 

for P~ = - 1, and equal to 

w;J-= (14~ 5 / 45~t) p.2 (P.i + (J.:- i !J.1p.2), (7) 

for P~ = +1. 
If we include only the contributions from the 

graphs 3a and 3b, we obtain for the ratio of the 
probabilities of the decays (2) and (1) 

w;-fw1 = (~ 2/lO~t){p.i + (J.~ + }!Ll!J.z) for Pr.A =- 1; (8) 

We see that this ratio does not depend on IJ. at all, 
and depends weakly on the relative parity of the 
~ and A hyperons. 

It follows from (8) and (9) that the value of JJ.~o 
can be determined from the ratio w2/w1, if the 
relative parity P~ and the value of the magnetic 
moment of the A0 hyperon, JJ.2, are known (two 
solutions are possible here). 

Let us consider a crude model in which the ~0 

hyperon is represented by a A0 hyperon with a 1r0 

meson rotating about it. In this model IJ.t = JJ.2 

for P~ = - 1 and IJ.t = -JJ.2 for P~ = + 1. Sub
stituting this in (8) and (9), we obtain 

w;- jw1 = 4~ 2tJ-i/ 15~t, (10) 

w;J- jw1 =- 2~ 2P.i/9~t. (11) 

If we now assume that IJ.t = e/mp• we find 

wzfw1::::::::5·10-6 • (12) 

As we shall see presently, even this small ratio is 
apparently an overestimate. 

For this purpose let us estimate the expected 
value of the magnetic moments of the A0 and ~0 

hyperons. Both particles have vanishing normal 
magnetic moments. We are therefore concerned 
only with their anomalous magnetic moments due 
to charged virtual particles. 

It is well known that the anomalous magnetic 
moments of baryons are in general equal to the 
sum of an isoscalar and an isovector term: 

[J. = [J.s + Ta(J.V· (13) 
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Thus we have for nucleons 

11-P = p.s + !J-v = I, 79 nucl. magnetons, 

:.1n =[A-s- {Lv = I ,91 nucl. magnetons, 

which leads to JJ.s = -0.06 nucl. magnetons and 
JJ.y = 1.85 nucl. magnetons; therefore JJ.s/JJ.y "'3% 0 

It can be easily shown that only the isoscalar part 
is different from zero for A0 and ~0 hyperons. In 
the case of the ~0 hyperon this is seen by setting 
T3 = 0 in (13); in the case of the A0 hyperon it is 
an obvious consequence of the fact that the isospin 
of the A hyperon is zero. If we assume that 
JJ.s « JJ.y for the hyperons as well as for the nu
cleons, we should expect that the magnetic moments 
of the A0 and ~0 hyperons are about an order of 
magnitude smaller than the anomalous magnetic 
moments of the ~+ and z- hyperons, and the latter 
should, according to formula (13), have about equal 
magnitude and opposite sign. 

The inequality JJ.s « JJ.y follows readily from 
the assumption that the main contribution to the 
anomalous magnetic moments of the nucleons is 
due to the virtual 1r mesons. This assumption is 
quite realistic, since the 1r mesons are the lightest 
among the strongly interacting particles, and it is 
these which determine the size of the cloud of 
virtual particles surrounding the nucleon. Since 
the interaction of the 1r mesons with the electro
magnetic field is of the isotopic vector type, we 
obtain JJ. s = 0, JJ.y ;.! 0 in the approximation in 
which the electric charges of all virtual particles 
except the 1r mesons are "excluded." In order 
of magnitude we should have JJ.y :S e/2m7ro The 
approximation in which only the electric charges 
of the 1r mesons (and of the ~ hyperons, whose 
interaction with the electromagnetic field is also 
of the isotopic vector type) are "included" will 
be called the isovector approximation. 

This approximation was first considered by 
Katsumori; 3 he formulated his results in the form 
of a "mirror theorem," according to which 

fA-p +fA-n= 0, [A-s-+ 1.1s• = 0, 

fJ-I:- +[A-I:+= 2[LI:• = 0, [A-A= 0° 

It is easily seen that in the isovector approxi
mation JJ., the magnetic moment of the transition 
~- A+ "y, is different from zero, unlike JJ. Ao 
and JJ. 0 o In the isovector approximation the 
decay :E~o- A0 + y is therefore allowed, while 
the decay :E0 - A0 + 2y is forbidden (since 
JJ. A= f.1. ~o = 0). It may turn out that this for
biddenness comes only from the special form of 
the graphs 3a and 3b and that there exist other 
graphs which give a non-vanishing contribution to 

the matrix element of the decay· (2) in the iso
vector approximation. If this were so, then our 
starting assumption that the graphs 3a and 3b are 
the most important ones would be incorrect. It 
can be easily shown, however, that not only the 
graphs 3a and 3b, but also the most general graph 
2, gives a vanishing contribution in the isovector 
approximation. Indeed, the isotopic structure of 
the matrix element corresponding to the graph 2 
has in the isovector approximation the form 

(14) 

where <till i >is the matrix element for the 
transition from the state i to the state f due to 
an interaction with T = 1; 11 > and < 0 I desig
nate the isospin of the initial (:E) and final (A) 
states· n is the isospin of the intermediate states. 
The m.'atrix element < 0 Ill n > is different from 
zero only if n = 1; but for n = 1 the matrix ele
ment <nllll > vanishes, since T 3 = 0 for the 
initial and final states. The decay ~0 - A0 + 2y 
is therefore strictly forbidden in the isovector 
approximation. 

Let us now turn to the estimate of the ratio 
w2/w1• On the basis of the above-mentioned iso
spin considerations we may conclude that this 
ratio should be of order 10-7• Such a small value 
for the ratio w2/w1 makes it unlikely that the de
cay :E0 - A0 + 2y can be observed with present 
experimental techniques. 

The authors take this opportunity to express 
their gratitude to V. B. Berestetskil, So Mo 
Bilen'kil, B. Lo Ioffe, and I. Ya. Pomeranchuk 
for valuable comments. 

APPENDIX I 

Let us compute the spectra of the secondary 
particles in the decay (2) 0 Summing over the spins 
of the photons and the A0 hyperon and averaging 
over the spin of the tJ hyperon in the standard 
way, we obtain for the differential probability of 
the decay (2) 

2 - dk1 dk2 dpz (I 1) 
Wz = (2") "mtl MzJ2o4 (P1 - !?2 - k1 - kz) Wt wz E, ' • 

I M2 j2 = [J-2fki [(p1k1) (pzkt) + (p1kz) (p2k2)- m1 (m1 + mz) (ktkz) 

m~(m1 ± mz) (ktkz)2 J , ,Lz,..~.2 [<P k ) (p k ) ' (p k ) (p k ) + (k)(k) -r,-,z 11 211 1~ 22 2Ptt Ptz 
m~ (mz ± m 1) (ktkz)Z J 

- mz (m2 + m1) (k1k2) + 2(p2k1 ) (p2kz) 

+ p.2fkl[.l.z~ + [2 (p1k1) (p1kz) + 2 (pzk1) (pzkz) 
' 

- (ktk2) (m1 + m2)2] + m1m2 (k1k2) [<Plkl) (p1k2) 

+ (pzk1) (pzkz)-} (k1kz) (mi + m~)J 
X Lp,k,/(pzk,) + (ptkz/(p.kz) ]} ' (!.2) 
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where the upper signs correspond to the case 
Pu = + 1 and the lower signs to the case 
Pu = -1. 

The further calculations will be carried out 
with an accuracy up to order ~/m. The photon 
spectrum has the form 

W t w) d 4 2 -1 [ 2 I 2 L ~ l 
\ W = fL 1t fLt T fL2 T 3 1-'-1fL2 

X (w2 + (!1- w) 2] w (!1- (u)dw, 

for Pu = - 1, and 

(!.3) 

w (w) dw = 4fL27t-1{[(fLi + fLD (w2 -+ (!1 - w) 2)-+u (!1- w)] 

-+- fL1fL2 [~ (w2 + (l1-w)2) -4(u(l1-w)]}w(l1-w)dw, (1.4) 

for Pu = + 1. 
The angular distribution of the photons is given 

by 

w (cos.&) d cos.& = (fL2l1 5j5~t) [fL; + tLi + fLtfL! ( 1 +~cos.& 

-cos2 .&)] d cos.&, 

if Pu = - 1, and by 

w(cos.&)dcos.& = (p.2l1 5j15~t)[(fL1 + p.2) 2 (2 + cos2.&) 

-p.1fL2(1 + 3cos2%)]dcos·&, 

if Pu = -1-1. 

(!.5) 

(!.6) 

The spectrum of the A hyperons has the form 

w- (x) dx = !1 2~ 5 [<P-i+ fL~) ( 1 + *) 
: 2 (-s+!?. 2+ 2(1-x"l 1 1+x)] 2d (!.7) 

T fLI(J-2 3 X X n 1 - X X X I 

for Pu =- 1, and 

w+ (x)dx = l'~t.• f<fLi + p.~)(- 1 + ~ x2 + (1 ~x")"ln ~ ~ ~) 
, 2 ( 5 , 13 2 2 ( 1 - x2) I 1 + x)J 2d (I 8) 

i fL1fL2 - T 3 X + x n 1 - x X X' . • • 

for P U = + 1. Here x = p/ ~ ( p is the momentum 
of the A hyperon). 

Integrating formulas (!.3) to (!.8) we easily ob
tain the formulas (6) and (7) quoted in the text. 

APPENDIX ll 

Let us now estimate the contribution of the 
graph 4 to the probability of the decay 1:- A+ 2y. 

This graph describes the process (2) as going 
through the decay of a virtual 1r0 meson. If 

Pu = + 1, the virtual 1ru meson is in a P state 
and the contribution of the graph 4 is negligibly 
small. Therefore, we consider only the case 
Pu = - 1. The matrix element corresponding to 
the graph 4 is 

M~ = 4rr i fg u2u1 [(k1 + k2)2 - m~r1ectllY& elaezfJkhk2s, (II.1) 
m,. 

where m1r is the mass of the 1r meson, g is the 
constant of the strong U 1r coupling, and the di
mensionless constant f characterizes the decay 
of the 1r0 meson ( 1r2f2m1rTo = 1, where To is the 
lifetime of the 1r0 meson). If both M2 and M2 

[formula (5)] are included, we obtain for w2, in
stead of formula (6), 

_ 2f.,; 2 ( 2 I 2 , 2 ) + 32r: f2 2 il 7 c 
Wz = ;)r. fJ. tJ-1 T fL2 T 3 tJ.ttJ-2 105 g m~ 1 

8 t.• 
- 90 fg 11 (tJ-1- P-2)3 C2, 

m,. 
(II.2) 

The coefficients C1 and C2 are corrections which 
take account of the term (k1 + k2 )2 together with 
m~ in the 1r-meson Green's function: 

C = 105 [~ ·a_ 5. + 5-4/..' -1 "A J = I 6 
1 16/..' 3 A A (1- A')'/, tan (1- /..')'/, (Ii.3) 

A 

[ 45(ln[i-A2 +z2] 15 45] 
C2 = 8A• J z"- ~z dz- 8/.."- 8/..• = 1.2, (Il.4) 

0 

where >.. = ~/m7r. 
Choosing r 0 = 10-16 sec, p, ~ e/m7r, and 

J.l.A ~ J.l-1;0 ~ e/10mp, we find that the contribution 
of the graph 4 becomes important when g ~ 1. 
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