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A number of 1r1r -scattering diagrams are considered for which the so-called singular curves 
(threshold of appearance of imaginary part of the amplitude) have asymptotic values equal 
to 16 J.L2• 

A knowledge of the singular points of amplitudes 
describing physical processes is of interest for 
its own sake as well as in connection with attempts 
to describe strong interactions phenomenologically .1 

We shall find the singular points of the 1r1r

scattering amplitude by making use of perturbation 
theory Feynman diagrams. 2 It is obvious that in 
order to find nearest lying singular points it is 
sufficient to consider only pions as the virtual 
particles. 

The singular points corresponding to diagrams 
1 and 2 (see Fig. 1 )* were determined by Mandel
stam.3 Denoting by W the total energy of the inci
dent pions in their barycentric frame, and by Q 
the momentum transfer we have: 

Q2 = 4W2 j (W 2 - 16) (diagram 1) 

Q2 = 16W2 1 (W2- 4) (diagram 2) 

(1) 

(2) 

( W and Q are expressed in units of pion mass). 
In the W2 - Q2 plane the curves 1 and 2 have 

as asymptotes the straight lines Q2 = 4, w2 = 16 
and Q2 = 16, w2 = 4. It is obvious from the 
pseudoscalar nature of the pion that the next 
boundary of singularities curves will have in the 
W2 - Q2 plane the asymptotes Q2 = 4 and W2 = 36 
(Q2 = 36, w2 = 4) or Q2 = 16 and w2 = 16. We 
restrict ourselves to discussion of diagrams be
longing to the latter class. 

We were able to find only the four diagrams 
(3- 6, Fig. 1 ), for which the singular curves have 
as asymptotes 16 and 16. Diagram 3 was studied 
by us previously.4 It is convenient to express the 
curve corresponding to this diagram in parametric 
form 

W 2 (x, y) = 2(1-xy)[1- 2j(x-y)]2, 

Q2 (x,y)=2(1 +xy)[1 +2/(x+y)]2 , (3) 

with the two parameters x and y related by 

*In the diagrams referring to TTTT scattering each pion is 
represented by a single line, while double and triple lines 
denote the exchange of two and three pions respectively. 

x2=-1fy+1+y. (3 ') 

Furthermore only the following values of x and 
yare permissible: y > x andy> -x, as a conse
quence of the condition that the Feynman param
eters a be positive. For W2 = Q2 we have W2 

= Q2 = 2 ( 2 + {5 )2 = 35.8 and x = 0 while 

y=(/5-1)/2. 
The singular points for the diagrams 4- 6 will 

be found by making use of the method described in 
detail previously.4 The elementary, but occasion
ally tedious, steps will not be given. We make 
only two remarks. First, when the relation be
tween Q2 and W2 is in parametric form it is con
venient to use as parameters ratios of the Feyn
man parameters a, since the latter are positive 
and this facilitates the determination of the region 
of permissible values of the parameters. Second, 
by taking into account the symmetries in the Feyn
man diagrams, the determination of the location of 
the singularities is drastically simplified. This 
symmetry leads to the equality of the correspond
ing scalar products,* or, what is equivalent, to 
equalities among the a. We indicate below what 
equalities among the a resulting from the sym
metry of Feynman diagrams were used by us. 

For diagram 4 the symmetry leads to a 1 = O!:J; 
a2 = a4; as = as = a1 = a 8. The singular curve is 
given parametrically as follows: 

W 2 (x) = (3 + x) (9 - x2) I ( 1 + x), 

Q2 (x) = (3- x) (9- x2) I ( 1 - x). 

The parameter x is restricted to the range 

(4) 

- 1 ::s x ::s 1 by the condition that a be positive. 
Here w2 (- 1) = oo, Q2 (- 1) = 16 and w2 ( 1) = 16, 
Q2 ( 1) = oo. For X = 0 W2 ( 0) = Q2 ( 0) = 27. 

For the diagram 5 the symmetry results in the 
equality a 2 = ~· The singular curve is given by 

*As shown by A. Z. Patashinskil (private communication), 
one can verify directly that there are no nonsymmetric solu
tions for a majority of the diagrams considered here. 
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(W2 -16) (Q 2 -16) = 192. (5) 

It is obvious that the asymptotes are w2 = 16 and 
Q2 = 16. For W2 = Q2 we have w2 = Q2 = S ( 2 + -/3) 
= 29.9. 

For the diagram 6 the symmetry leads to the 
equalities: a 2 = a6; a 1 = a 3 = a 5 = a 7• The singular 
curve is given by 

Q2=16!VW2-JJ2/VW2[JfW2-4J. (6) 

For W2 - oo, Q 2 - 16 and for Q 2- oo, w2 - 16. 
For W2 = Q2 we have W2 = Q2 = 34.6. 

The singular curves corresponding to the dia
grams 1- 6 are shown in Fig. 2 (curve 7 in Fig. 
2 corresponds to diagram 7, which is obtained 
from 6 by the substitution w2 ~ Q2 ). 

As was already mentioned, we were unable to 
find any diagrams, other than diagrams 3-6, that 
would give rise to singular curves with asymptotes 
Q2 = 16 and W2 = 16. However we do not have a 
rigorous proof that no other such diagrams exist. 
We list below various considerations used by us in 
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determining the absence of singular points in a 
number of diagrams. 

First, we have assumed that it is sufficient to 
consider diagrams which when cut by an arbitrary 
horizontal or vertical line give a sum of the masses 
of the virtual particles equal to four. This assump
tion was based on the example of diagram S (the 
mass of the particle is given next to each line). 
In order that this diagram have a singular point it 
is necessary that diagrams Sa and Sb have singular 
points. If J.L2 < m 2 + m'2 and M2 < m 2 + M'2 then 
diagram Sa has a singularity only for w2 > 4m2. 
Analogously, if m 2 < M2 + M'2 and Jl2 < M2 + M"2 
then diagram Sb has a singularity only for w2 

> 4M2. Consequently diagram S has a singular 
curve with asymptotes W2 = 4€2 with € the larger 
of the masses m and M. * 

*Proceeding in an analogous manner, it is easy to show 
that if the above conditions on the squares of the masses are 
violated either for diagram Sa or diagram 8b, then diagram 8 
has no singularities at all; diagram 9 is an example of such a 
erase. 
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sided contour, diagram lla. In this manner it is 
possible to discuss along with diagram 5 diagram 
12 which differs from diagram 5 by having one of 
the vertices satisfying the above conditions replaced 
by a three-sided contour. The location of the sin
gularities of diagram 12 is the same as the loca
tion of the singularities of diagram 5. Applying 
to diagram 12 successive transformations of a 
vertex into a three-sided contour we obtain more 
and more new diagrams, all of which have singular 
lines coinciding with those of diagram 5. A situa
tion arises that is analogous to what happens to the 
singularities of Green's functions: diagrams 13 
and 13a have singularities in the same locations. 

Let us also note the trivial circumstance that 
if one of the vertices of a three-sided contour 
satisfies the relation M12 = I p,1 ± p,2 I while the 
other vertices fail to satisfy the corresponding re
lations, as for example is the case for diagram 14, 
then the presence of such a contour in a given dia-
gram results in the absence of singularities. 

Third, it is easy to establish that the four-sided 
10 Jll 40 

FIG. 2 

sowz contour of diagram 15 has no singular curves. As 
a result diagrams containing this four-sided con
tour also have no singularities (e.g., diagrams 16 
and 16a). 

Second, a substantial simplifieation in the 
analysis of complicated diagrams results when 
there is contained within them a three-sided con
tour such that the mass of the particle represented 
by the line entering one of the vertices is equal to 
the sum or the difference of the masses of the par
ticles corresponding to the internal lines entering 
the same vertex. Diagram 10 is an example of 
such a contour. It is easy to verify that if M12 
= I p,1 - p,2 l, then it is necessary for the existence 
of a singular point to have M13 = p,1 + p,3 and M23 
= p,2 + p,3 . On the other hand, if M12 = p,1 + p,2, 
then M13 = I p,1 n p,3 I and M23 = I p,2 "'p,3 1. A 
three-sided con~ur satisfying these conditions 
can be transformed into a vertex (diagram 1 Oa) 
and conversely the vertex of diagram lOa may be 
transformed into the three-sided contour of dia
gram 10.* 

Let us discuss, for example, the vertex of dia
gram 11. It may be transformed into the three-

*It is essential here that only one relation among the a 
exists in a three-sided contour. 

Fourth, for a number of diagrams the absence 
of singularities was established by direct calcula
tions (the impossibility of satisfying the condition 
that the parameters a be positive). Some of these 
diagrams ( 17-20) are shown in Fig. 1. 

The authors acknowledge their deEiJp indebtedness 
to Academician L. D. Landau for int~rest in this 
work and discussions. 
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