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A new form of the Van Hove-Hugenholtz perturbation theory expansion is proposed. The ser
ies obtained differ from the known ones by the simplicity of the energy denominators; this can 
be useful, for instance, when evaluating excited states. The derivation of these expansions is 
also fairly simple. 

IT is well known that the usual perturbation theory 
expansions cannot adequately describe systems 
with a large number of degrees of freedom which 
occupy a large volume in space. The main cause 
for this is that the series for such systems contain 
arbitrarily large powers of the volume. 

At the present time this difficulty has already 
been overcome by various means. One of the dif
ferent solutions of this problem is the theory pro
posed by Hugenholtz. 1 Using the formalism devel
oped earlier by Van Hove2• 3 and amplifying his dia
gram method, Hugenholtz reorganized the series in 
such a way that the theory now only deals with quan
tities which are proportional to or independent of 
the volume. The new series contain, however, en
ergy denominators that are more complicated than 
usual, which makes their practical application dif
ficult. The energy of a perturbed system is, for 
instance, expressed in terms of the eigenvalues of 
the operator* 

G (z) = (V + V (z- H0 - G (z))-1 V + .. . )id· (1) 

Here Ho is the Hamiltonian of the unperturbed sys
tem, V the perturbation energy, and z a complex 
number. 

Equation (1) is essentially an equation for G ( z) 
in the form of an infinite series. The series for 
other quantities are not in the form of equations, 
but they contain the same denominators [ z - H0 

- G ( z)] - 1• t This fact is particularly inconvenient 
in those cases where the problem to be solved is 
such that the series can not be broken off after a 

*The index id indicates that only the so-called irreducible 
diagonal diagrams are taken into account when evaluating the 
matrix elements of the series (see reference 1). 

tAn exception is the series for the ground state, where the 
results can be simplified. This, however, is not so very inter
esting as the same results had been obtained earlier by Gold
stone• and afterwards (and much more simply) by C. Bloch. 5 

few terms, and one must sum (at least a well de
fined class of diagrams ) in all perturbation theory 
orders. The case of a system with Coulomb inter
actions is, for instance, such a case. 

We propose in the present note a simple deriva
tion of the basic expansions of the Van Hove-Hugen
holtz theory, 1- 3 which leads to series with unper
turbed denominators ( z - H0 ) - 1• The series ob
tained can also be used as the basis of the com
plete theoretical formalism of the papers men
tioned, if this formalism is slightly changed (see 
the survey article6 ). 

1. DERIVATION OF THE BASIC EXPANSIONS 
USING OPERATOR TECHNIQUES 

We shall consider systems with a continuous 
(or quasi -continuous ) spectrum, the Hamiltonian 
of which can be split into two parts 

H=Ho+V, (2) 

where V can be considered to be a perturbation. 
We denote the wave function and eigenvalue of the 
unperturbed system by I a >o and Ea. We denote 
the same quantities for the perturbed system by 
I a > and Ea. We also introduce the perturbed 
and the unperturbed resolvents 

R (z) = (z- Hfl, 

In references 3 and 1 it was shown that* 

Ea. = Ea -i- Ga. (Ea.)· 

The symbol REa± is defined by the equation 

REa± f (z) = lim (z- Ea.) f (z), 
Z-+Ea.±iO 

(3) 

(4) 

(5) 

and the function Ga ( Ea ) is the eigenvalue of the 

*The presence of two signs for ja.> corresponds to two 
complex-conjugate functions. This can easily be proved for a 
wide class of systems (see reference 6). 
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operator (1) in the point z = Ea. It is clear that if 
f ( z) has a pde of the first order in the point z 
= Ea, the limit (5) is uniquely defined and gives 
the residue of f ( z) in that pole. We retain the 
term "residue" also for the case where the two 
limits in (5) are different. 

We must, according to Eqs. (4) and (5), expand 
R ( z) I a >o in V so that the factor that is singular 
at the point z = Ea is explicitly split off. We start 
from the easily verified formula 

R (z) = D (z) + D (z) V R (z). (6) 

By iteration we get from (6) the series 
co 

R (z) = D (z) ~ (VD (z))", (7) 
h=O 

which is useful for what follows, but which does not 
possess the property which we need at Ea ;r Ea. 
We return thus to (6). One can write any operator 
P as a sum of a diagonal and a non -diagonal oper
ator (in the I a >o representation) 

(8) 

We shall arrange the splitting up (8) in such a way 
that the second term on the right hand side of the 
expression for the matrix element, 

(9) 

does not contain terms with a factor o (a - {3 ). 
Here Pda is the eigenvalue of the operator Pd 
and o (a - {3) a product of the Kronecker symbol 
and the Dirac delta-function, if the quantum num
bers of the system are partly discrete and partly 
continuous. In such a split, ( Pnd) d = 0. 

For the sake of simplicity we assume for the 
time being that 

Vnd = V. (10) 

[The requirement (10) does not reduce the gener
ality, as Vd can always be included in H0• Prac
tically speaking, however, it is inconvenient and 
we shall later on drop it. ] Taking into account the 
fact that a product of operators of which only one 
is non-diagonal is itself a non-diagonal operator, 
we find the diagonal and the non ·-diagonal part of 
(6) 

Rd = D + D(VRnd)d, 

Rnd =, DV Rd + D (V Rnd )nd· 

(11) 

(12) 

Assuming the series so obtained to converge, we 
solve (12) for Rnd by iteration. We get then 

(13) 

(14) 

Here we have put, by definition, 

(DV ... DVDV)vd = {DV •.. [DV (DV)nd]n,dnd· 

By virtue of (11) we get from (13) 

Rd = D + D(VKnd)dRd· 

We introduce the diagonal operator* 

G(z) == (VKnd(z))d = {v ~ (D(z) Vl"} . 
k=l sd 

(15) 

(16) 

(17) 

The meaning of the index sd is defined by Eq. (15) 
if the last index nd in that equation is replaced by 
d. Equation (16) now takes the form 

Rd = D+ DGRJ, 

from which follows directly one of the basic Van 
Hove-Hugenholtz formulae 1•2 

(18) 

For the resolvent we get 

R (z) ={I+ Knd (z)} Rd (z). (19) 

This is the second important formula of the same 
authors. 

One can easily verify the validity of the rela
tions 

a+ (z) = G (z'), R; (z) = Rd (z'), (20) 

that follow from the hermiticity of H0 and V. 
Equations (18) and (19) have been obtained by 

relatively simple means and the denominators in 
the expansions for Knd ( z ) and G ( z ) are in our 
case the operators z - H0• 

One verifies easily that the expansion (19), un
like (7), possesses the property we need and en
ables us to find in fact the residue (4). Indeed, by 
virtue of (14) the first factor on the right hand side 
of the equation 

R (z) J rx ) 0 ={I+ Knd (z)} J rx ) 0 Rda (z) (21) 

can suffer only a finite discontinuity on passing 
through the real axis. The factor Rcta ( z ), how
ever, has, apart from a discontinuity on some seg
ment of the real axis, also a pole in the point z 
= Ea [see (18) ]. 

Up to now the derivation has been purely formal 
in character. For a practical application of the 
formulae obtained it is necessary to establish the 
rules for evaluating the matrix elements of operators 
with indices vd and sd. To understand these rules 
it is enough to consider an example. Let us as
sume that we must evaluate the matrix element 

*Van Hove had also obtained G(z) in the form (17) by 
other means. The index sd (simple diagonal) was introduced 
by Van Hove (private communication). 
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o( IX I (VDV)vd I~ )o = ~ d1X1 o< IX IV IIX1)o Da, o(IXll VI~ )o. 
(~d) (22) 

According to (9) and (15), the index vd indicates 
that if I a >o = I {3 >0, the element (22) is evaluated 
by taking the limit a - {3 for a ;>< [3, while in the 
integral over a 1 we must exclude a small neigh-
borhood near I a 1 >o = I {3 >o and let this excluded 
neighborhood tend to zero after the integral has 
been evaluated. 

From the very beginning we could have started 
not from (6) but from the equivalent equation 

R=D+RVD; (6a) 

and we should then, by analogous considerations, 
have been led to the equation 

R = Rd{l + Qnd}; (19a) 

Qnd(z) ={~ (VD(z))k}_, (14a) 
k=l vd 

(VDVD ... VD);,. = {[(VD)ndVD]nd· .. VD}nd· (15a) 

Using the property P~d = ( p+) nd one can verify 
that 

K-j:d (z) = Qnd (z'). (23) 

Equation (23) enables us to use Van Hove's method2 

to prove the important inequality 

Im Ga. (z)-< U (Irn z > 0). (24) 

From the formulae established above we can obtain 
all basic results of Hugenholtz and Van Hove (see 
reference 6). 

2. DERIVATION USING DIAGRAMS 

In order to get rid of arbitrary powers of the 
volume in the expansions, we must be able to single 
out the singular factor not only from the resolvent 
as a whole, but also from its separate parts, which 
correspond only to diagrams of certain classes. 
(A method of comparing diagrams with the matrix 
elements of the operator (7) is described by Hug
enholtz.1] For instance, it is important to sepa
rate the singularity of RL ( z ), which is that part 
of the resolvent obtained when only diagrams with
out vacuum components (linked clusters) are con
sidered in the matrix elements of the series (7). 
This part of the resolvent is independent of the 
volume. The method considered in the foregoing 
for separating Rct ( z) from R ( z) cannot be ap
plied immediately in this case. We give therefore 
a more general method, which is based upon the 
use of diagrams. 

a p-1 p p+Z /( 

--- I I I • • 
I I I I !::' 
I I I 

1 I I ~ "'rt 
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~ ...., 
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b p-1 p p+l p+Z /( ---- ----

nli 
II 
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This derivation is essentially already suggested 
by the preceding arguments and leads also to ex
pansions with simple denominators z - H0• Con
dition (10) can now be dropped. 

An arbitrary Hugenholtz diagram for Rnd ( z ), 
RLnd ( z ), or any other non-diagonal part of the 
resolvent has been schematically depicted in 
Fig. a*. Figure a is completely equivalent to 
Fig. b. In other words, if any diagram is cut by a 
vertical line AA successively after the first, sec
ond, . . . vertex, the diagram to the right of AA 
will be non-diagonal p-1 times, but the p-th time 
it will turn out to be diagonal. (Clearly (see 
Fig. c) this will be the largest diagonal part of the 
diagram, containing the right hand end.] Combin
ing in one group all terms of the series with the 
same number p of vertices to the left of the diag
onal part, and expanding the group in order of in
creasing p, we obtain easily not only Eq. (19), but 
also, for instance, the relation 

RL (z) = {I + KLnd (z)} RLd (z). (25) 

Similarly we obtain also equations of the kind 
(17), (19a), and so on. In other words, equations 
which are completely analogous to the equations 
for R ( z ) itself are also valid for parts of the 
resolvent. 

We are now already able to reproduce all for
mulae from the Van Hove-Hugenholtz theory on the 
basis of the simplified expansions. In conclusion 
we note that the derivation with the aid of diagrams 
gives another procedure for evaluating the matrix 
elements of operators with vd and sd. To evalu
ate the elements of the operator Knd ( z ), for in-

*This figure is schematic in that the actual lines between 
vertices have been replaced by straight line segments, so as 
to guarantee the generality of our considerations. 
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stance, we need only take into account diagrams of 
the type show11 in Fig. c. 
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