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Stationary quasi-one-dimensional and one-dimensional flows are considered. It is shown that 
shock wave formation is possible under certain conditions in the case of media with finite 
conductivity. 

STEADY one-dimensional and quasi-one-dimen
sional flows (by the latter are meant flows with a 
variable, smoothly changing cross section f ( x) 
filled by the given lines of flow) of an arbitrarily 
conducting medium, assumed here to be an ideal 
gas, are described for the case of a perpendicular 
magnetic field [u 1 H, u(u, 0, 0), H(O, hh, 0), 
E ( 0, 0, eh)] by a set of stationary equations of 
magnetic gas dynamics, two of which have as first 
integrals1 

d (puf) I dx = 0, puf = M, (1) 

puduldx-f-dpmldx=O, (2) 

d (hu) I dx = vmd2h I dx2 , hu = Vmdhldx + MB, (3) 

udp- ua2dp = Vm (k- I) (dh)2 I dx (4) 

(u, p, p, H, E are the velocity, pressure, density, 
magnetic and electric field, respectively; M and 
B are constants; Pm = p + h2/2; Vm is the "mag
netic" viscosity, k is the ratio of specific heats, 
and a = ( kp/ p ) 112 is the speed of sound ) . 

Let us consider the stationary quasi-one
dimensional flows of media with vm = 0. We 
have from the system (1) - (4) 

dp I du = -(pI ua2) (u2 -- h2 j p), (5) 

It is not difficult to prove that the current dens
ity p u achieves its maximum value at the criti
cal point for which u = amo = ( a2 + h2 I p )1/ 2 • The 
following relations can also be obtained from 
Eqs. (1)-(4): 

(6) 

(u2 - a~0) du I u = a2df If, (7) 

(u2 - a~0)dp I p =- (u2 - h2 / p)df If, (8) 

whence it follows that for u < amo• if df ~ 0, then 
du §' 0; for u > amo• if df ~ 0, then du §' 0. It 
is interesting that the extremum of p takes place 

for u2 = h2/p, which is seen from (5) (h/[p is 
the velocity of propagation of Alfven waves). It 
follows from (8) that for df < 0, if u2 :;;; h2/p, 
then dp ~ 0; for df > 0, if u2 §' h2/ p, then 
dp §' 0, i.e., in a flow with converging flow lines 
we have a maximum p for u2 = h2/p, and with 
diverging lines we have a minimum p. 

We consider stationary one-dimensional flows 
of media with vm ;e 0. If f = const, then it is 
necessary to replace the input M and the constant 
B in the set (1) - (4) by the current density m 
= M/f and the constant b = Bf, which is expressed 
in terms of the constant value of the electric field 
e = e 0: b = -ce0 /m. Here Eq. (2) has the integral 

mu + Pm =I. (2a) 

We further transform Eq. (4) by means of (1) and 
(3) in such a fashion that the differential dpm ap
pears in place of dp. We obtain an equation simi
lar to Eq. (4): 

udpm- ua;,dp = vm (k- I) (dh I dx) 2 dx, (4a) 

where 

- ( 2+ h dh )'j,- ( 2 _ _;__ A + A )'/, am - a dp - a ' Lll Ll2 

= (a2 _ !!:____ _ v !!_ d2h; dx2)'/, 
+- p m p dujdx 

(9) 

coincides with the expression for the propagation 
velocity of low-intensity shock waves in an arbi
trarily conducting medium in the presence of a 
perpendicular magnetic field. 1 We can also verify 
that am has the meaning of an effective sound 
velocity by linearizing the nonstationary system 
corresponding to Eqs. (1)- (3), (4a) in the usual 
way. When vm = 0 we have h = const · p and 
am = am0; for vm ;e 0 the value of am depends 
essentially on the flow conditions. It is evident 
that if 6 1 is due to the magnetic field, then the 
presence of 6 2 can be explained by the finite 
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conductivity; in this case it is natural to assume1 

that 

The "freezing-in" condition follows from (1) 
and (3): 

hIp= (vm I m) dh I dx + b, 

while the equation 

(10) 

(11) 

(u2 - a;n) dp I p = v m (k- 1) m-1 (dhldx) 2dx = (k- I) dQ, 
(12) 

can be obtained from (1), (2a) and (4a), where 

dQ = (vm I m) (dh I dx) 2 dx = TdS (13) 

is the Joule heat. If the components .6.1 and .6.2, 

which are obtained in terms of am from (9), are 
transferred to the right-hand side in (12), then, 
by taking (11) into account, we have 

(u2 - a2 ) dp / p = (kvmm-1dh I dx :-b) dh. (14) 

With the help of the well-known thermodynamic re
lations that hold for an ideal gas 

dw = dQ + dp I p = kdQ + a2dp I p (15) 

( w is the enthalpy), and making use of (13) and (1), 
we reduce Eq. (14) to an integrable form 

udu + dw + bdh = 0, 

u2 I 2 + w + bh = u2 /2 + Wm = A =canst. (16) 

It is easy to prove that wm has the meaning of 
effective enthalpy only when ~'m == 0. 

We can use the integral (16) in place of (4a); 
thus, for example, we can obtain from (1), (2a), 
(3), and (4a) a single equation for dh/dx, which 
can be integrated numerically .1 

We note that Eq. (12) recalls the well-known 
equation of classical gas dynamics for the motion 
of a viscous gas in a heat-insulated pipe of con
stant cross section. 2 Since we shall not consider 
the effect of thermal conduction, and since the 
motions of media with finite conductivity are ac
companied by dissipation and the production of 
heat, such an analogy becomes obvious. 

The right side in (12) can only be positive; 
therefore, 

dp < 0, du > 0 for u < am; 

dp > 0, du < 0 for u > am. (17) 

Continuous transition through the critical veloc
ity u == am is impossible (flow crisis). For u 
==am, at the point x == xk, we have 

dh! dx '" = 0 

and, as follows from (9), 

(18) 

(19) 

The values of u, p, p, h at the point xk are 
completely determined from (1), (2a), (3), and (4a) 
in terms of the constants m, b, J, and A (we 
also have am == a at the point in the current 
where dh/dx == - mb/vm and h == 0 ). The rela
tions (18) and (19) satisfy Eq. (14), which gives 
in addition another possible value of dh/dx for 
the flow velocity u == a ( x == x*): 

dhj dx lx• =- mb I kvm. (20) 

If we take into account the entropy S as a func
tion of p, then it is seen from (12) that when u 
== am this function has an extremum which can 
only be a maximum, since there is no S == S ( p) 
that has a minimum when u == am and satisfies 
simultaneously (17) and the condition dS > 0. In 
this connection, we can conclude the following: 
if at any point in the current x == x0, taken as the 
initial point, we have u > am while S == Smax is 
attained at a finite distance from x0, then the 
formation of a shock wave is inevitable, behind 
which u < am; if S == Smax is attained at infinity 
or is not attained at all, then u > am at any finite 
distance from x0; if at the point x0 we have 
u >am, then the value u ==am is a maximum 
and is attained only at infinity. However, it is 
necessary to recall that in media with high con
ductance (small value of Vm ) there is a high 
thermal conductivity, an account of which can lead 
to qualitatively different results. 

We now determine the possible values of 
dh/dx in the current, at the initial point of which 
u (x0 ) and h (x0 ) > 0, while e == e 0 < 0. It is ob
vious from (11) that dh/dx ~ -mb/vm. It follows 
from (14) that for u < a, 

dh I dx > 0 or - mb I '1m<:; dh I dx < - mb I kvm, 

- mb I kvm < dh I dx < 0, 

for u >a, 

- mb I kvm < dh I dx < 0,, 

du > 0, 

du < 0; 
(21a) 

du > 0, 

dh I dx > 0 or - mb I '1m < dh I dx < - mb I kvm, du < 0. 
(21b) 

Comparing (21), (17), (9), and (10) we get 
for u<a, am (du>O, dp<O): 

- mb /'1m <:; dh I dx < - mb I kvm, d2h I dx2 > 0; (22a) 

for a < u < am ( du > 0, dp < 0 ) : 

- mb I kvm < dhldx < 0, d2h 1 dx2 > 0; (22b) 

for u>a, am (du<O, dp>O). 

dh I dx > 0, d 2h j dx2 < 0. (22c) 

It is clear from (22) that the value of dh/dx 
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= -mb/vm (h = 0) is impossible while, generally 
speaking, a point x = x* can exist in a current 
with u <am. 

The values of dh/dx can be similarly estimated 
for other flow conditions. 

In conclusion, the author expresses his gratitude 
to Prof. K. P. Stanyukovich and G. S. Golitsyn for a 
number of discussions. 
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