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A connection is established between the Fermi excitation energies as defined by the Landau 
theory of the Fermi liquid and by the many-particle quantum theory at zero temperature. 

AT the present time a number of papers1- 4 dis
cuss the microscopic derivation of the fundamental 
premises of Landau's general theory of the Fermi 
liquid. 5 Landau3 obtained a most essential result 
by establishing the exact microscopic meaning of 
the function f (p, p'), which plays a fundamental 
part in the theory of the Fermi liquid and deter
mines the variation of the quasi-particle energies 
Ep under infinitesimal changes in their distribution 
functions n ( p ) 

6ep = Sp 0 ~ f (p, p') 6n (p') dr:'. (1) 

As regards the quasi-particle energy, the follow
ing must be kept in mind. In the theory of the 
Fermi liquid, Ep is defined as the variational de
rivative of the total energy of the system with re
spect to the distribution function n ( p) 

ep = oE!on (p). (2) 

On the other hand, in the general many-particle 
quantum theory, it has been shown6• 7 that the ener
gies and attenuations of the Fermi excitations of 
the system (quasi-particles or holes), for momenta 
close to the boundary, are determined by the poles 
of the one-particle Green's function in the momen
tum representation 

G (p, e) = [e~- e -r. (p, e)]-\ 

e0 = p212m 
p ' 

(3) 

along the lower half-plane (for quasi -particles) or 
the upper half-plane (for holes ). From this we 
obtain the following equations for the energy Ep 
and the attenuation r p of a quasi-particle: 

e~- ep- r.0 (p, e)= 0; (4) 

fp = 1::1 (p, ep) I [l + (aE0 jae).=spl. (4a) 

where 1: 0 = Re1:, 1: 1 = Im1:, and 1: is the compact 
part of the self energy of the particle. Obviously, 
it is to be expected that the quantity Ep, defined by 
the relation (2), should agree with the root of Eq. 

(4). The aim of the present communication is to 
prove this statement. 

We shall make some preliminary observations. 
It has been shown6•8 that the imaginary part of the 
Green's function, and therefore also the attenua
tion, change sign at E = fJ., where J..l. = 8E/8N is the 
chemical potential of the system. To supplement 
this theorem, which is completely general in char
acter, we shall make the assumption that the imag
inary part of the self energy is continuous at E = fJ., 
i.e., 

lim r.1 (p, e) = 0 (5) .__,.,. 

[we note that this assumption serves as the basis 
for the derivation of (4) and (4a) ] . 

Let us now consider the equation Ep = J..l. ( rela-
tive to p), which, according to (4), can also be 
written in the form 

e~- fl. -r. (p, fl.) = 0. (6) 

The root (Po) of this equation is the limiting mo
mentum for the quasi -particles E (Po) = f..l.· 

Using an expansion in powers of the interaction 
constant, Hugenholtz and van Hove 9 (see also ref
erence 7) showed that p0 coincides with the limit
ing Fermi momentum for an ideal gas: 

Po = (3nW)'1• ("h. = I), (7) 

where N is the number of particles in the system, 
whose volume is taken to be unity. This theorem 
may prove to be incorrect under conditions in 
which perturbation theory is inapplicable. For in
stance, for systems displaying superconductivity, 
Eq. (6) has in general no real solution*. 10 In our 
work it has been assumed that perturbation theory 
is applicable. We also assume that the forces act
ing between particles are paired. 

*In this connection we note that it follows from Landau's 
results, obtained without the aid of perturbation theory (see 
footnote 3 of reference 4), that if (6) has a real root, it coin
cides with (7). 

133 



134 V. I. KARPMAN 

Let us now undertake the quantum -mechanical 
determination of oE/on(p) (we assume that T = 0), 
starting from the assumptions given above. In doing 
so we shall use, in a definite manner, the idea used 
by Klein and Prange 7 for the proof of the cited 
theorem of Hugenholtz and van Hove. 

Let us consider any diagram which makes a 
contribution to the total energy of the system, for 
example one of those in the figure. The dotted 
lines correspond to the expression 

iu (k) = i ~ U (x) exp (ikx) d4x, U (x) = v (x) {J (x0), 

where v ( x) is the potential of the interaction be
tween the particles, the vertex eorresponds to a 
delta function expressing the law of conservation 
of the 4-momentum, and the full. line corresponds 
to the Green's function of the non-interacting par
ticles 

00 (p, e)= (e~- e -· ifJ)-1, 

6 _, + 0 for p > po; {J _. -- 0 for p < po. (8) 

To obtain the energy of the system as a functional 
of the occupation numbers of the quasi-particles, 
we express (8) in the form 

G (p, e) = P - 0-1 - + in (1 -2n (p)) {J (eo -e), (9) 
ep- e P 

where n (p) are the occupation numbers of the non
interacting particles at T = 0 

n (p) = { 1 (p < Po) • 
0 (p >Po) 

(10} 

In what follows it is important that the occupation 
numbers of the non-interacting particles coincide 
with the occupation numbers of the quasi-particles 
in the ground state and in states differing infinite
simally from the ground state. 

The expression for the total energy will have 
the form 

E = E0 - S (Q), (11) 

where Eo is the energy of the non-interacting fer
mions, which can be expressed in the form 

E0 =~e~n (p) d3p; d3p = dpxdp0 dpzl(2n) 3 , (12) 

and S ( Q ) is the sum of the contributions of all the 
corrected diagrams. The quantity Q correspond
ing to an n-th order diagram has the following 
form: 

(13) 

where d4q = d~ dqy dqz dq0 /(27r) 4, l is the num
ber of closed loops, o j is the delta function located 

at one of the vertices, and the factor a can take on 
one of the twd values 1 or % (see below). 

Each of the Green's functions G0 ( q) = G9 ( q, q0 ) 

in (13) depends on the occupation numbers n ( q ). 
Hence Q is a functional of n ( q ). Upon evaluating 
oQ/on ( q) we obtain 2n terms, some one of the 
functions G0 .(qi) being varied in each term. In the 
remaining quantities, n ( q) is equal to its value at 
T = 0 [see Eq. 10) ]. Thus, each of the 2n compo
nents has the form 

- i 0n1i(p) ~ G0 (q, q0)E~>(q, q0) d4q, i = 1, ... , 2n, (14) 

where in performing the variation it is only the 
function G0 which need be assumed to depend on 
n ( q). Substituting into this the expression for G0 

from (9) and performing the variation, we obtain 
instead of (14), 

- ~ E~> (p, e) {J (e- e~) de = - EW (p; e~). (15) 

The function I:~)(p, E), from its definition con
tained in (14), is represented by a diagram obtained 
by eliminati11g one of the full lines in the total en
ergy diagram (see the figure). Consequently 1:~) 
corresponds to one of the diagrams of particle self 
energy (generally speaking, a non-compact one). 

----u 

____ 0 
a b 

We now observe that in some of the total-energy 
diagrams it is possible to obtain one and the same 
self-energy diagram by eliminating either of two 
different lines (see b in the figure). This effect 
is compensated by the factor a in (13), which, as 
Klein and Prange have shown 7 is equal to 7'z for 
such diagrams, and to unity in the remaining cases. 
Finally, it can be stated that variation of S (g) 
yields the totality of all possible self-energy dia
grams for the particles, each diagram being counted 
only once, i.e., 

(16) 

where the index R indicates that non-compact as 
well as compact diagrams enter into (16). In view 
of (11), (12), and (16) we obtain 

6E/6n (p) = e~ - ER (p, e~). (17) 

For I:R we may write the expansion 

ER (p, s) = E + EG0E + EG0EG0E + ... , (18) 
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where ~ ( p, E) is the compact portion of the self 
energy of the particle. The right-hand side of (18) 
has a singularity at E = E~. Nevertheless, the 
quantity ~ R ( p, E~) can be assigned a definite 
value by following the method described in the ap
pendix to Klein and Prange's paper. 7 

Let us first put p = p0• In this case the imagi
nary part of the self energy (and consequently the 
attenuation) is equal to zero. It follows from (15) 
that when E = E~0 , ~ R ( p0, E) must be taken to 
mean* 

As shown in the appendix to reference 7, it follows 
from (18) and (19) that 

(20) 

where Ep0 is the energy of a quasi -particle with a 
momentum equal to the limiting momentum p0• 

Consequently, 

(21) 

where E.Po satisfies Eq. (4), q.e.d. 
Turnmg to the case p ¢ p0, we note that here 

the attenuation is not equal to zero. The concept 
of quasi -particle energy is meaningful only when 
the attenuation, and therefore also the imaginary 
part of the self energy, are sufficiently small and 
can be neglected. According to our assumption of 
the continuity of Im ~ at E ~ JJ-, this will be the 
case if p is sufficiently close to p0• Neglecting 
the imaginary part of ~ for these values of p, and 
repeating the considerations which led to (20) and 

*In view of the singularity of IR(p0 ,E) at E = E~, for
mula (19) is by no means a trivial consequence of the defini
tion of the a-function. 

(21), we obtain 

6E/6n (p)::::::: ep, 

where Ep satisfies Eq. (4), and p is sufficiently 
close to Po· When p = Po this equation becomes 
exact. 

The author expresses sincere thanks to E. S. 
Fradkin, L. P. Gor'kov, and D. A. Kirzhnits for 
valuable discussions and critical comments. 
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