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Results of calculation of the angular distribution of the radiation emitted by a charged particle 
passing through an isotropic ferrodielectric plate and through a crystalline plate are presented. 
In the case of thick plates the main contribution is due to the Cerenkov radiation. An investi
gation of the solution shows that in the frequency range in which the projections of the wave 
vector and the Poynting vector on the particle velocity have opposite signs, the Cerenkov radi
ation is emitted through the back wall of the plate. 

The radiation emitted by a charged particle moving through thin dielectric plates is also 
considered. 

1. The problem of energy transfer through bound
aries is of a considerable importance in the theory 
of the Vavilov-Cerenkov effect. In particular, it is 
interesting to study the angular distribution of the 
radiation emitted by a charged particle penetrating 
through a plate. Omitting the calculations, which 
are analogous to those carried out in reference 1, 
we give here the final results. The angular distri
bution of the radiation energy behind the plate is: 

a) for the case of a ferrodielectric plate 

dW., _ e2v• sin2 ~ cos• ~ , J• 
dQ. - " 2c3 (1- ~· cos•~)• If (w, &) ' 

f (w, &) = {[(e-1) (1-~x) -~2(e[.t-1)l (1 +~x) 

X (x + y) eiwxdfc_l- [(e -1) (1 + ~x)- ~ 2 (e[.t-1)](1- ~x) 

X (x-y)e-iwxdfc -2x[(e-1)(1-~2x2) 

- ~2 (ef-t - 1) (1 + ~y)] eiwdfv} X [(x + y)•eiooxdfc 

_ (x _ y)• e-i "'xdfc l-1 (1 _ ~·x•) -I, 

x =Ve[.t-sin2 & (Imx<O), 

y = e cos&, d Q = sin &d&dq;; (1) 

b) for the case of a plate cut from a uniaxial 
crystal perpendicular to its optical axis* 

dW., _ e•v• sin2 ~ cos• ~ \ ~ F (w &) I• 
dQ. - "•cs (1- ~· cos2 ~) 2 se ' ' 

F(w, &) = [(y1 +XY•)(x +'YJ)e'"'Xd!c+(y1-xy2)(x-1))e-i"'xd/c 
-2x (y1 +1JI•) et"'d/u] [{X +1l)•etwxd/c 

_ (x -1))•e-t"'xd!c]-1 (1 _ ~·x•) -1, 

y 1 = ~2 sin2 & + 1 - ~ 2 - e0~ 2 sin2 & -Be + e0ee~ 2 , 

Y•=~(1-~2 -e.feo+ee~2), x= [eo-(eolee)sin2 &]'/, 

(Im X< 0), 'Y) = e0 cos&. (2) 

*Formula (2) has been derived earlier.• The results given 
in the present article, in the part concerning the crystal plate, 
were obtained in that investigation. 

In deriving the formulas it was assumed that the 
particle moves perpendicularly to the plate with 
constant velocity. The following notation has been 
used in Eqs. (1) and (2): e and v are the charge 
and velocity of the particle, respectively, {3 is the 
ratio of the particle velocity to the velocity of light 
in vacuum, d is the plate thickness, J. is the angle 
between the normal to the plate and the direction 
of observation, cp is the azimuth angle, and Eo and 
Ee are the transverse and longitudinal components 
(with respect to the crystal axis) of the dielectric 
permittivity tensor. In the derivation, all the quan
tities were expanded in Fourier integrals and, 
therefore, in the presence of damping it was as
sumed that the imaginary parts of E, f.J., E0, and Ee 
are negative. 

The formulas for the angular distribution of the 
radiation energy in front of the plate can be ob
tained from Eqs. (1) and (2) by replacing {3 by - {3. * 
It should be noted that (1) and (2) are valid at suf
ficiently large distances, where the total field 
forms a spherical wave. 

It is of interest to consider the results obtained 
from the point of view of the Vavilov-Cerenkov ef
fect. For simplicity, let us assume in the following 
that the plates are ideally transparent. For the 
direction of the refracted Cerenkov angles, satis
fying the equations 

a) ~2(e[.t-sin2 &) =1, b)~2(e0 - e0e;-1 sin2 &)=1. (4) 

an infinity of the type lim sin2 (ad )/a 2, where d 
a-o 

*For p. = 1 and E0 = Ee = E, Eqs. (1) and (2) coincide with 
the results of the author given in references 1 and 2. [In ref
erence 2, typographical errors occurred in the signs of the 
second and third exponents in the numerator of Eq. (2)]. 
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is the plate thickness, occurs in (1) and (2). In the the particle path, are coherent. This explains why 
case of thick plates (compared with the wavel~ngth ), the radiation energy varies as the square of the 
(1) and (2) exhibit sharp intensity maxima, propor
tional to the square of the plate thickness. The 
width of these maxima is inversely proportional to 
d. As the result of reflection of the Cerenkov rad
iation from the front surface, similar maxima ap
pear in front of the plate also. A study of the for
mulas reveals that the ratio of the Cerenkov radi
ation energy emitted backward ( Wb ) to the energy 
emitted forward (Wf) is, in the two cases con
sidered, given by the expressions* 

a) wb = (1- e~cos~,)· 
Wr (1+e~cos~,)" 

where ..9-r are the refracted Cerenkov angles. It 
can be seen from Eq. (4) that, in the frequency 
range where the Cerenkov light ray makes an ob
tuse angle with the direction of motion of the par
ticle, 4 more energy is emitted backward than for
ward. The forward radiation is a result of reflec
tion from the back wall. It is interesting that when 
the radiation is emitted at Brewster's angle, for 
which in the given case the denominators in Eq. (4) 
vanish, the forward Cerenkov radiation disappears 
completely. 

2. Let us consider the radiation in thin dielec
tric plates. We shall use the formula for radiation 
energy2 correct for plates of arbitrary thickness. 
Assuming that I ..fE I wd/c « 1 and that wd/v « 1, 
and expanding all the exponents in Eq. (2) 2 in a se
ries, we obtain for the case of a relativistic par
ticle the angular distribution of radiation intensity 
in front of the plate in the form 

dW"' (1) e•w•d• , 2 sin• ~ cos2 ,<). 

dQ= 4n'c3 js-lj (1-~'cos','J.)' · (5) 

Since the result is independent of the sign of the 
particle velocity, the angular distribution behind 
the plate is identical. The corresponding spectral 
density of the radiation energy is given by the for
mula 

(6) 

It is obvious that the perturbations due to separate 
patches of low inhomogeneity, encountered along 

*At small distances from the plate, the refracted Cerenkov 
waves are cylindrical. In the case of an isotropic dielectric 
plate these waves were studied by Garibyan and Chalikyan. 3 

It should be taken into account that the last bracket of Eq. (7) 3 

should read (e:V 1+ vlc 2(1- e:)-1) instead of (vil +vlc-2(1-e:)-1. 
The ratio of the Cerenkov radiation energy emitted backward 
[ Eq. (7) of reference 3) to the energy emitted forward [Eq. (8)3) 

is then identical with the expression obtained in reference 1 for 
an isotropic plate. It follows from Eq. ( 4) as a particular case 
for p. = 1 and E0 = e:e = €. 

plate thickness.* 
From the results given above one can conclude 

that the radiation energy in a thin stack of thin 
plates will be proportional to the square of the 
number of plates. For a large separation between 
the plates, the coherence condition is violated, and 
the energy is proportional to the number of plates. 
In order to determine the coherence condition let 
us consider the angular distribution of radiation 
energy for the passage of a charged particle through 
a stick consisting of m thin plates. Omitting the 
calculations, the final result for a relativistic par
ticle is 

dW.,(m)/dQ =II +exp [iwc-1 (!-l~cos.& +d)l 

+exp [2iwc-1 (l- l~ cos.& +d)l 

+ ... + exp [(m- I) iwc-1 (l - l~ cos.& 

+d)lj 2 dW., (1)/d Q, 

<I Vel wdm 1 c ~ l), (7) 

where l is the distance between. the plates and 
dWw (1)/dQ is determined from Eq. (5). The rad
iation energy density per unit solid angle in E~ 
(5) has a maximum in the direction J ~ .../ 1 - 132. All 
particles will radiate coherently if, in the direction 
J ~ .../ 1 - 132, The largest exponent in Eq. (7) is much 
smaller than unity, 

wc- 1 [l (Mc2/£)2 + d)m~ I, (8) 

where M is the particle mass and E is its total 
energy. The spectral radiation energy density is 
proportional to m 2:Ww(m) = m 2Ww(1 ). Under the 
condition 

wc-1 [1 (Mc2/£)2 +d)~ 1 (9) 

the coherence condition for adjoining plates is vio
lated and, therefore, W w( m) = mW w< 1 ). t 

A study of Eq. (5) reveals that the logarithmic 
increase in the spectral energy density of the transi
tion radiation (6) from each plate is due to the 
emission at all angles large compared with 

*The calculations of the energy loss for a particle travers
ing a thin plate were carried out also by Garibyan. 5 The author 
calculated the work done by the force acting upon a particle, 
limiting himself to the term linear in the plate thickness. Since 
the Poynting-vector flux through a remote sphere is proportional 
to the square of the thickness, the estimates obtained in refer
ence 5 should be attributed to other, non-radiative losses, i.e., 
ionization of the atoms in the plate. 

tGaribyan• found the radiation field due to the passage of a 
charged particle through a stack of plates. His conclusions re
garding the radiation energy do not follow, however, from the 
solution obtained. 
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J ~ ..J 1 - {32. Since, at large angles, the coherence 
condition is more stringent, the above fact will lead 
to a lesser variation of the coherence condition 
with the energy of an ultra-relativistic particle. 
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