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It is shown that in the mathematical apparatus of statistical physics the possibility of the 
existence of negative and limiting positive temperatures in a thermodynamic system is 
connected with the analyticity of the sum of states as a function of the reciprocal of the 
temperature. 

A number of papers in recent years have ex
plained the usefulness of considering the "partition 
function" Z (A.) for a thermodynamic system not 
only for real positive values of the temperature 
variable {3 = 1/kT Re A., but also in the entire com
plex plane. In fact, if we write Z (A.) as a Laplace 
integral 

00 

Z (f-)= ~ p (£) e->-Ed£, (1) 
0 

where p ( E ) is the spectral density for the energy 
of the system, then on inverting the transformation 
(1) we get 

o+ioo 

p (£) = 2!i ~ Z (f-) e>-Edf-, (2) 
a-ico 

where the integral is taken along a straight line 
Re A. = a which lies entirely in the region of analyt
icity of the function Z (A.). 

If the energy spectrum is bounded below, then, 
without loss of generality, we can take the lower 
limit of the spectrum to be zero. If the energy 
spectrum of the system is bounded above, i. e., if 
p (E)= 0 for E > Emax• then the function Z (A.) 
is analytic in the entire plane of the variable A.. 

If the energy spectrum is not bounded above, 
then the region of analyticity of the function Z (A. ) 
depends on the degree of increase of the function 
p(E). If 

logp(E)j£_,.a as £_,.co, (3) 

then the function Z (A.) is analytic in the entire re
gion Re A. > a. 

• From Eq. (1) we obtain in the usual way 

00 

d 1 \ -
- dl- In Z (f-) = z (A) ) Ep (E) e-~Ed£ = E (f-), 

0 

:~2 In Z (f-) = (£- E (l-))2 = (t1£)2 = - d~lt-) , (4) 

where E (A.) and ( ~E )2 are the mean energy and 
the dispersion of the energy according to the com
plex distribution p (E) e -EA.. On the real axis of 
the plane of A. = a + ir these quantities take the 
real and positive values 

E (a)> 0, -dE (a)jda > 0. (5) 

For large values of the energy E the integral 
(1) can be calculated approximately by the method 
of steepest descent. With logarithmic accuracy we 
have 

In p (£) = In Z (~) + ~E, (6) 

where the saddle point {3 is a root of the equation 

Z' (~) + Z (~) E = 0, (7) 

or, when we take the definition (4) into account, a 
root of the equation 

E(~) =E. (7') 

We shall prove that the saddle point lies on the real 
axis. Differentiating Eq. (6) with respect to E and 
regarding {3 as a function of E defined by the equa
tion (7), we get 

dlnp(E) =(Z'(~) +£)~+R=R (8) 
dE Z (~) dE t' t'· 

Since the left member of Eq. (8) is real, we must 
have Im {3 = 0. 

We shall prove that the saddle point is unique. 
If the energy spectrum is not bounded above, then 
from the definition (4) it follows that 

E(a) = oo, E(oo)=O . 

Since in virtue of Eq. (5) the function E (a) de
creases monotonically in the range a <a < oo, tak
ing all values from oo to 0, the equation (7) has 
one and only one root. 

If the energy spectrum is bounded above, the 
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function E (a) falls off monotonically in the inter
val 

E (-oo)=Emax<E(a)<E(oo)=O 

and (7) has -one solution in the interval - co < {3 < oo. 

We see from (4), (6), and (8) that 

F (~) = - ~-1 In Z (~), s (£) = lnr(£), kT = lj~ (9) 

are the free energy, entropy, and temperature of 
the system. One usually considers thermodynamic 
systems in which p ( E ) does not increase with the 
energy faster than algebraically, i. e., ln p ( E ) /E 
- 0 as E- co, and consequently Z (A.) is an ana
lytic function of the complex variable A. in the en
tire right-hand half-plane. 

We shall study here two examples of "unusual" 
thermodynamic systems for which negative and 
limiting temperatures exist. 

THE ISING MODEL 

As is well known (cf., e. g., reference 1) for 
large n the sum of states Z (A.) of a linear Ising 
chain consisting of n sites has the form 

Z (1-.) = {2coshJt-.)n, (10) 

where J is the interaction energy between simi
larly directed adjacent spins. In the derivation of 
Eq. (11) it is assumed that the interaction energies 
of similarly and oppositely directed spins have op
posite signs. If we take the interaction energy of 
similarly directed spins to be zero, and that of op
positely directed spins to be 2J, Eq. (10) takes the 
form 

Calculating p (E) according to Eq. (2) by the 
method of steepest descents on the assumption 
E/n = E (with the ratio E finite for large n), we 
get 

In p (£) = n[ln (2cosh J~) + ~e- J~], (12) 

where {3 is the root of the equation 

S (~) = J (1- tanh J~) =E. (13) 

Since the energy spectrum of the lattice is bounded 
above, arbitrary values of {3 are possible. It is 
not hard to show that the value {3 = 0 ( T = co, 

€ = J) corresponds to complete absence of short
range order; {3 = + co ( T = 0, € = 0) corresponds 
to the establishment of complete short-range order, 
with adjacent spins parallel; for {3 = - co the spins 
are antiparallel. It is known, however, that in the 
linear Ising lattice there is no temperature what-

ever at which long-range order is established. 
The situation is different for the plane Ising lat

tice. Here, as in the case of the one-dimensional 
chain, arbitrary values of {3 are possible. The 
formula found by Onsager2 for the free energy 
f ( {3) per site of the lattice 

'"' 
f (~) = f [+In 2 + 2~2 ~ ~ In [ cosh2 2J~ 

0 0 

- sinh,2J~(cos w +cos w')] dwdw' (14) 

(as before, J is the coupling constant between ad
jacent spins) is invariant with respect to the in
terchange {3 - - (3. It is well known that the plane 
Ising lattice has the property of ferromagnetism 
and makes a phase transition of the second kind 
with a logarithmic discontinuity of the specific heat 
at {3 = f3c, where f3c is given by the equation 

sinh 2J~, = I . (15) 

From what has been said it follows that the 
plane lattice also makes one other phase transition, 
at the negative temperature given by the equation 

sinh 2J~, = -1. (16) 

If for f3c = 0 the contribution to the singular 
part of the integral (14) is given by w, w' = 0, 
which corresponds to ferromagnetic ordering, then 
for f3c < 0 the main contribution to the singularity 
comes from w, w' = 1r, i. e., the transition point is 
antiferromagnetic. 

Obviously the presence of positive and negative 
Curie points, corresponding to transitions to ferro
magnetic and antiferromagnetic states, is also 
characteristic of the Heisenberg model (provided, 
of course, that it leads to any phase transition at 
all). 

GAS OF NONINTERACTING PARTICLES IN AN 
EXTHNAL FIELD WITH AN ASYMPTOTIC
ALLY LOGARITHMIC POTENTIAL 

In the space between the planes z = 0 and z = H 
let there be an ideal gas consisting of N particles 
of mass m, which are in an axially symmetrical 
field ( z, r, cp are cylindrical coordinates): 

{ 0 r <a (17) 
U (r) = 2U0 In (r/a) r >a. 

It is not hard to see that in lhis case the statis
tical weight p ( E ) increases exponentially with 
increase of E [ p (E) ,..., exp ( E/U0)]. Therefore it 
is to be expected that such a system possesses a 
limiting temperature. We shall confirm this sup
position by an exact calculation. 
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We have for the sum of states per particle 

z (f-) = ( 2"m )'/, 2rtH r e-W(rl rdr = rtH (2rtm)'/•a2 • (18) 
A J A.'i• (A.U 0 -1) 

0 

This formula is true for A.U0 > 1. For A.U0 < 1 
the integral diverges. Thus these exists a limiting 
temperature T* = U0, above which the system can
not be heated. 

The physical cause of the phenomenon is that 
because of the slowness of the increase of the po
tential the particles spread very far apart as their 

energy increases, and their kinetic energy is small 
in comparison with their potential energy. 

1 T. L. Hill, Statistical Mechanics, Chapter 7 
(McGraw-Hill Book Company, 1956). 

2 Yu. B. Rumer, Usp. Fiz. Nauk 53, 245 (1954). 

Translated by W. H. FUrry 
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