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Quadrupole relaxation of nuclear spins of diamagnetic atoms in liquids is treated theoretic­
ally. The calchlations are made on the assumption that the thermal motion of the liquid par­
ticles is a free translational diffusion. This assumption is valid for metal and salt melts and 
for weakly solvated ions in electrolyte solutions. It is found that T21 "' ry/T (1'/ is the viscos­
ity of the liquid) which is in good agreement with the measurements of T21 for the nuclear 
spin of I127 in aqueous solutions of Nai and KI salts. 

1. INTRODUCTION 

ONE of the reasons for the lack of a complete 
theory of liquids and of liquid solutions is our poor 
knowledge of the potential of interaction between 
the particles of a liquid, particularly at small dis­
tances. Therefore, it is difficult to obtain unambig­
uous results on structure and on the motion of par­
ticles in a liquid from a comparison of the physical 
properties of the liquid with a theory which utilizes 
an approXimate interaction potential. 

However, if we study liquids by the method of 
magnetic resonance, the potential of the interaction 
between the magnetic moments of the particles can 
be determined quite accurately. Therefore, in a 
comparison between theory and experiment the only 
unknowns are the data on the structure of the liquid 
and the constants which characterize the motion of 
its particles (the diffusion coefficient or the cor­
relation time ) . Investigations carried out during 
the last few years by the method of magnetic reso­
nance have demonstrated the great promise of this 
method, particularly for the investigation of the 
structure of a liquid and of the nature of motion of 
its particles. In the first place a study was made 
of homogeneous diamagnetic liquids (water). It 
was shown that the magnetic resonance line in 
water is narrowed as a result of the influence of 
thermal motion: the thermal motion averages out 
the magnetic fields with which the magnetic par­
ticles act on one another, and this leads to line 
narrowing. 1 Considerable progress was made in 
the study by the nuclear magnetic resonance method 
of internally hindered rotations of molecules in 
solid molecular substances. Later studies were 
extended to solutions of diamagnetic and paramag­
netic salts in various solvents. It turned out that 

the shape and the width of the magnetic-resonance 
line due to paramagnetic ions dissolved in a dilute 
solution depend primarily on the structure of the 
complex formed by the ion and the molecules of 
the solvent, and on the nature of motion of the par­
ticles of this complex.2•3 The same situation was 
also observed in solutions of some diamagnetic 
ions whose nuclei possess large quadrupole mo­
ments. 4 It became clear from this work that the 
dissolved ions can play the role of probes which 
are very convenient for the study of the nature of 
thermal motion and of structure in electrolyte so­
lutions. It is obvious that this conclusion also ap­
plies fully to liquid melts of metals (alloys ) and 
of salts. 

However, the number of experimental investi­
gations of solutions of electrolytes and ionic liquids 
(metal and salt melts ) carried out by the magnetic 
resonance method is so far comparatively small. 
The reason for this lies partly in the lack of a the­
ory which would enable one to interpret the experi­
mental results unambiguously. Such a theory must, 
by starting with a specific model of the liquid, pre­
dict the line shape and its behavior as a function of 
the temperature, the external field etc. First at­
tempts of this kind were the investigations of 
McConnell5 and McGarvey.6 They based their work 
on a model which assumes the existence in a solu­
tion of a paramagnetic salt of a stable solvated 
complex, and they investigated the contribution to 
the width of the electron resonance line made by 
the random rotation of the complex. They consid­
ered the complex to be a rigid microcrystal. Com­
parison with experiment showed that such a mech­
anism for the broadening of the resonance line 
turns out to be the principal one only in rare cases. 
fu a joint paper by Al'tshuler and the present au-
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thor6 it is shown that in solutions of paramagnetic 
electrolytes the principal mechanism of line broad­
ening is the interaction of the electron spin of the 
ion with the internal thermal vibrations of the 
solvated complex ion. 3 A theory based on a simi­
lar line-broadening mechanism turned out to be 
justified also in the case of nuclear magnetic reso­
nance lines of diamagnetic ions whose nuclei pos­
sess an electric quadrupole moment, under the 
condition that the ions form stable solvated com­
plexes in water. 4 

In this paper we investigate the theory of the 
width of nuclear magnetic-resonance lines in 
liquids in which the atoms under investigation 
have a quadrupole moment and do not form stable 
complexes with other particles of the liquid. This 
assumption is applicable, for example, to the quad­
rupole relaxation of nuclear spins of halogen ions 
in aqueous solutions of electrolytes, since, as is 
well known from physical-chemistry studies, the 
halogen ions do not form stable associations 
(complexes ) with the molecules of the solvent. 
With certain limitations, a molecule of water may 
be represented by a point charge; the choice of the 
value of the effective charge of the molecule will 
affect the value of the calculated line width, leaving 
unaltered the physically important dependence of 
the line width on the temperature and on the nature 
of the thermal motion of the particles. A similar 
situation also exists in the case of alloys of metals 
and ionic salts, and in these cases the charge 
(ionic) model of the liquid is quite accurate. On 
the basis of the foregoing we assume that the ther­
mal motion of the particles of the liquid represents 
free translational diffusion. This assumption will 
be justified best of all in the case of liquids at 
temperatures considerably above their melting 
point. Near the melting point microcrystals can 
exist in the melt; the quadrupole relaxation of nu­
clear spins in these microcrystals will evidently 
be determined by random rotation or by internal 
vibrations. These mechanisms are similar to those 
studied by us in reference 4. 

We now elucidate the essence of the relaxation 
mechanism under consideration at present. 

We single out of the bulk of the liquid one ion 
whose nucleus has an electric quadrupole moment. 
The other particles, regarded as point charges 
and occupying, generally speaking, random posi­
tions with respect to the singled-out ion, will give 
rise at its nucleus to a resultant inhomogeneous 
field E. Due to diffusion the relative position of 
the particles will change; this will lead to random 
variations of the electric field E with time. By 
acting on the quadrupole moment of the nucleus 

the field E can affect its spin. Random shifts of 
the energy sublevels of the nuclear spin will re­
sult from this interaction, and this will give rise 
to secular broadening of the resonance line and to 
broadening due to relaxation transitions between 
the sublevels. 

2. THE METHOD OF CALCULATION 

The Hamiltonian for a system of spins of nuclei 
possessing quadrupole moments has the following 
form in a strong magnetic fiel~ 

A ~~ 't 
H = -r~NHo~ it+ H. (1) 

The energy of the internal interactions H' is a 
small perturbation compared to the Zeeman energy 
of the spins; in our problem it represents the en­
ergy of the nuclear quadrupole moments in the elec­
tric fields due to the surrounding particles. 

If we neglect the thermal motion of the particles 
of the system, then the broadening of the resonance 
line caused by the perturbation H' can be calculated 
in the following manner. The (secular) part of H' 
diagonal with respect to the spin of the particle 
under consideration will result in a displacement 
of the spin levels of this particle. For a system 
containing a large number of particles such dis­
placements will form a continuum giving a line of 
a certain width ~w which can be evaluated by 
means of the formulas: 1 

The averaging indicated by the angular brackets 
is taken over the space and the spin variables. 

(2) 

We now must take into account the effect on the 
line width of the thermal motion of the particles. 
In our problem the thermal motion of the particles 
represents a translational diffusion. Since diffusion 
is a random process the matrix element H~m 
which depends on the spatial coordinates of the par­
ticles of the system will be a random function of 
the time. The square of the matrix element H~m 
can be represented in the form of the Fourier in­
tegral 

+oo 

<I H~m (t} 12) = ~ J mm (w} dw, (3) 
-oo 

where Jmm ( w) is a function describing the fre­
quency spectrum of the perturbation. According 
to the theory of random processes, the spectral 
function Jmm ( w) is determined by the correla­
tion function gmm ( T): 

+<» 
J mm (w) = Q~m ~ e-iw<g (-r:) d-r:, 

-oo 
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We shall evaluate the quantity T21, which charac­
terizes the secular line broadening, by means of 
the formula 1 

which is sufficiently accurate when rapid motion 
occurs in the system. 

(6) 

The exponential function exp (- T/rc) is often 
adopted for the correlation function gmm ( T ). 

However, in those cases when the distribution den­
sity U ( q0, q) of the spatial coordinates q of the 
system is known, the function g ( T) can be calcu­
lated directly. Our case is just of this kind. Hinm 
depends on the radius vector RA ( RA, e A• cpA) 
from the center of mass of the nucleus under con­
sideration to the charge e A- The distance RA 
varies as a result of the process of diffusion, and 
therefore the distribution U ( R A) is a solution 
of the free translational diffusion equation7 

00 

U (RA, 't; R~. 0) = (2;). ~ e-2k'lD~ ~ g1 (kRA) g; (kR~) 
0 

D = kT/61r77a is the diffusion constant, a is the 
ionic radius. 

(7) 

(8) 

The function U is equal to the probability den­
sity of finding the charge e A at the instant of time 
r within the volume dv, at a distance RA from 
the nucleus under consideration if at zero time it 
was at a distance R~ from the nucleus within the 
element of volume dv0• In (7) the solution of the 
diffusion equation is written in the form of an ex­
pansion in terms of spherical harmonics, which 
is convenient for the subsequent averaging. 

In place of (5) we now have 

gmm (-:) = n;;;;n ~ H~m (q) H;;,"' (q0 ) U (q, q0 ) dqdq0 • (9) 

The matrix elements nondiagonal with respect 
to spin Hinm'; I m -m' I ro 0 give rise to an addi­
tional non-secular line broadening due to the de­
crease in the lifetime of the spin in a given state 
due to relaxation transitions between different 
states. The probability of these transitions is 
determined by the formula 1 

Q2 +.oo 
Wmm' =li-~JIII!rt'(UJ)= ;;~"!: ~ exp(-il<lmnz•'l:)g(-:)d-:, 

-CO (10) 

and the corresponding relaxation time by the for­
mula8 

T~1 = (21 +I)~ w 11, (Et- EkF I~ (Et- Ek)2 • (11) 
I;- k 1>11 

3. THE ENERGY OF THE QUADRUPOLE MO­
MENT OF A NUCLEUS IN THE FIELD OF 
A POINT CHARGE 

The energy of the quadrupole moment of a nu­
cleus in an inhomogeneous electric field produced 
by external charges can be represented in the form 
of the scalar product of the electric quadrupole mo­
ment tensor for the nucleus Dik and the electric 
field gradient tensor at the nucleus9 

H' = h-+ D;k (V'E/k, (V'E)'k = azcp I ax,.axk. (12) 
i, h 

In the representation in which I2 and Iz are 
diagonal the five independent components of the 
tensor Dik are quadratic functions of the compo­
nents of the nuclear spin 

c = eQ I I (21- 1). (13) 

We choose the origin of the laboratory system 
xyz at the center of mass of the nucleus under con­
sideration, and we direct the z axis along the ex­
ternal magnetic field. We denote by RA (RA, eA. 
cpA) the radius vector of the charge e A' In spher­
ical polar coordinates, the components of the ten­
sor (V'E )ik can be written in the form. 

(\E)0 = 3 Y 1 ~"~ eARil3Yg (cpA, OA), 

(V'E)"1 = 't/:l~r::~ eARilYf-1 (6A, CfA), 

(vE)=-2 =yo;~ eAR::i 3Y~ 2 (6A, yA)· (14) 

We can easily evaluate the non-zero matrix ele­
ments of the operator for the quadrupole energy of 
the nucleus (12) 

!(11111 = v~ c ( I + r) (3m 2 - I (I + 1)) ~ e AR}l3Yg 

(15) 

A ,, R-3y±l 
== m, m=.1 ,L.J t?A A 2 , 

(16) 

A '\1 R-3 yo: 2 
:;:::::::: m, tn±2£JeA A 2 • (17) 

The factors 1 + y have been introduced into (15) 
and (16) to take into account the effect called anti­
shielding, which consists of an enhancement of the 
fields produced at the nucleus by charges external 
to the ion containing the given nucleus as a result 
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of the deformation of the electron shells of the ion. 
The numerical values of I y I have been calculated 
theoretically for most ions having a nuclear quad­
rupole moment. 10 

4. THE CORRELATION FUNCTION 

We now evaluate the correlation function for 
the matrix elements (15)- (17). The coordinate 
part of the matrix elements (15)- (17) coincides 
with the coordinate part of the matrix elements 
of the energy operator for spin-spin interaction. 
The correlation function for the latter defined by 
(5) and (9) has been evaluated by Skrotskil and 
Kokin. 7 They obtained the following result: 

00 

gmm' (p) = g {p) = : ~ e-px' ei: X- COS X y X- 2dX, (18) 
0 

where p = T/Tc, Tc = 2a2/D; however, they did 
not carry out the further evaluation of the integral. 

The integral (18) can be evaluated by differenti­
ating it with respect to the parameter p: 

00 

6 \ (sin x )2 g~ (p) =- 1t ~ e-Px' -x-- cos x dx. (19) 
0 

The resulting integral can be easily evaluated by 
means of breaking it up into parts: 

g~ (p) = - :~ [ p'f, (e-'IP- 1) + + p-'!. (e-'IP + 1) J . 
(20) 

The correlation function (18) can now be rewritten 
p 

g (p) =- z ;7< ~ [2p'l• (e-'IP- 1) 
0 

-+ p-'1• (e-'IP + 1 )l dp + const, (21) 

the integration constant is determined from the 
condition g ( oo) = 0. 

On carrying out the integration required in (21) 
we obtain the final form of the correlation function 
for the matrix elements (15) - (17): 

g (p) = ~ [Vot <f> (p-'1•) + _!_ p'l-e-'IP- p'f, 
l/1t 3 3 

+ ~ p'l• ( 1 - e-'IP) J ; 
it is normalized to the values g ( 0 ) = 1 and 
= 0; <I> ( x) is the error function. 

(22)_ 

g(oo) 

It is appropriate to make a few remarks on the 
form of the function g (p ). As can be seen from 
(22) and from the figure, the function g (p) differs 
appreciably from exp ( - p ) . Yet the exponential 
function is often chosen for the correlation function 
for quite different random processes perturbed by 
different motions. Such a choice is dictated both 
by a desire for simplicity of calculation, and also 
apparently by the widespread opinion that the ex-

a- graph of the func­
tion exp( -p ), b- graph 
of the function (22). 

ponential form of the correlation function neces­
sarily follows from the Markov character of the 
process. We see that although the diffusion proc­
ess is a Markov process, the correlation function 
obtained by us does not have an exponential form. 
There is no doubt that the simplification of the 
correlation function to exponential form introduces 
a definite error into the results as has been spe­
cifically established, in particular, by Skrotskil 
and Kokin. 7 

5. THE RELAXATION TIMES T2 AND T1 

We evaluate the normalized spectral densities 
of the matrix elements in accordance with (2), (10), 
and (22). The correlation function can now be con­
veniently written in the form 

00 

g(p) = Zl;it ~ [2x'l•(1-e-'fx)-x-'1•(1+e-'fx)]dx; (23) 
p 

and with this definition the constant of integration 
will be equal to zero. We denote the normalized 
spectral density by 

+co co oo 

j (w) = ~ e-io" g (-r) d-r = ~~:. ~ cos cxp dp ~ [2x'f, ( 1 - e-'/x) 
-00 0 p 

- x-'12(1 + e-'fx)ldx, (24) 

where 

w0 is the nuclear spin precession frequency. The 
integral (24) can be evaluated by changing the order 
of integration: 

00 X 

j (w) = 3:c, \' [2x'/, (1 - e-'ix)- x-'/, (1 + e-'!x)] dx \cos cxp dp 
rei ~ j 

0 0 

= 3-rc [(z-3 - 2z-")+e-z cos z (z-3 + 4z-4 + 2z-•) 

+ e-z sin z (z-3 - 2z-•)l, 
where 

z = (2cx)'/· = cn(J}o'tc)'l•. 

(25) 

Expansions of the function (25) in the limiting 
cases z « 1 (rapid motion) and z » 1 (slow 
motion) are given in reference 7. 
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for z <I, 

for z > l. 
(26) 

We can easily obtain the averaged squares of the 
matrix elements 

n!m' = <I H~m' (0) [2) = I Amm' [2 (N jV) (e~j24a3), (27) 

since 

2J (R.A.6 [ Y~'[ 2) = Nj(24a3V). 
A 

In a liquid the condition z « 1 is practically al­
ways fulfilled. In this case we obtain for the re­
laxation time T2 

T -1 _ 2" Q (I 2[3m2 -I(I+1)12 N "c 
2 - 751i2 [eeA + j)) I (21- 1) V (2a\3 • 

(28) 

The factor contining the spins is equal to 1 and 
0.56 for spins % and % respectively. 

Under the condition z « 1 the probabilities of 
relaxation transitions are equal to: 

W ( 3/2, 1/ 2) = W ( - 1/2, - 3/z) = 32U. 

w (5/ 2, 1/ 2) = w (-1/2, - 5/2) = 40U, 

w e;2, - 1/2) = w e;2, - 3/2> = 12u, 

(29) 

(30) 

By utilizing formula (11) and the probabilities (29) 
and (30), we find that the relaxation time T1 for 
spins % and % is, respectively, 

T;-1 = :;~ 1i-2 (eeAQ (1 + r)) 2 (N;V) -rc/8a3, 

6. AQUEOUS SOLUTIONS OF ELECTROLYTES 

We have investigated the quadrupole relaxation 
of nuclear spins in diamagnetic solutions of elec­
trolytes in reference 4, where we used as our 
basis the assumption that around ions in solution 
stable hydrated (solvated) complexes are formed 
consisting of molecules of the solvent, or of mole­
cules of the solvent together with ions of the elec­
trolyte dissociated in the solution. For aqueous 
complexes of Al3+ and Ga3+ ions, which form 
stable hydrated complexes in solution, we obtain 
good agreement between the calculated and the 

measured values of the width of resonance lines. 
For r-, Br-, Na+ ions the measured line widths 
do not agree with those calculated on the assump­
tion of the existence of a stable complex. This is 
apparently associated with the fact that the life­
times of the hydrated complexes of the r, Br-, 
Na+ ions are shorter than the relaxation times T1 
(or T 2 ) calculated by us for these ions, while the 
complexes of the AI3+ and Ga3+ ions live longer 
than the lattice relaxation times of their nuclear 
spins ( 10-4 sec). It is natural to assume that the 
r, Br-, Na + ions do not form stable complexes 
at all in aqueous solution (this also follows from 
investigations in physical chemistry), and that the 
relative motion of the molecules of the solvent and 
of the ions of the dissociated electrolyte repre­
sents free translational diffusion. Then in order 
to determine the line widths and the spin-lattice 
relaxation times for the r-, Br-, Na + ions (and 
for other non-solvated ions) we can utilize for­
mulas (28) and (32). 

Let us calculate T2 1 for I- ions in aqueous 
solution. The antishielding coefficient 1 + y for 
the r ion is equal to 10 179.85, the nuclear con­
stants for the I127 isotope are: spin equal to %. 
and quadrupole moment Q = 0. 7 b. Instead of 2a 
one should now naturally take the sum of the radii 
of the I- ion and of the water molecule 2a = rr­
+ rH2o = 2.16 + 1.45 = 3.61 A. Moreover, the dif­
fusion coefficient for water at 23° C is equal to11 

2 x 10- 5, so that Tc = 2a2/D = 3 x 10- 11 sec. The 
number of particles per unit volume is equal to 
N/V = 3 x 1022 • We shall determine the effective 
charge of the water molecules later by means of 
comparison with experiment. On substituting the 
above values of the constants into (28) we obtain 

T;-1 = 6.9·105 (eAfe)2. (33) 

Itoh and Yamagata 12 have investigated the variation 
of T2 1 for the nuclear spins of the r ions in 
aqueous solution. They found that the dependence 
of T2 1 on the temperature has a close res em­
blance to the temperature dependence of the ratio 
11/T for any given solution. Formula (28) predicts 
just such a dependence 

'=c = (12a3rrjk) 1JiT, T-;1 ~ '=c ~ 1JIT. (34) 

Further, the isothermals of the quantity T2 1 must 
be proportional to the viscosity of the solution: 

T-;1 ~1J· (35) 

Itoh and Yamagata12 have studied the dependence of 
T2 1 on the concentration of the solution, and this 
dependence has turned out to be considerable in a 
solution of Nai and not very great in solutions of 
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KI. At first glance formula (28) does not show any 
dependence on the concentration of the solution. 
However, the viscosity of the liquid depends on the 
concentration of the solution: the experimentally 
observed dependence of T2 1 on the concentration 
agrees closely with the dependence of the viscosity 
on the concentration in accordance with (35). 

We now turn to formula (33) and determine the 
effective charge of the water molecule. On substi­
tuting the value of T2 1 = 7 x 103 sec- 1 obtained 12 

for 23° C and extrapolated to infinite dilution we get 

the spin-lattice relaxation (the relaxation time Td 
is determined by the interaction with the conduction 
electrons, while the line width (the relaxation time 
T2 ) is determined by the magnetic interaction of 
the nuclei among themselves. 13• 14 A result of this 
is the inequality T1 ;r. T2• As a crystal is heated 
various lattice defects are produced: the cubic 
structure of the lattice is destroyed, and this re­
sults in the appearance of quadrupole broadening 

eA = 0,1 e. 

of magnetic resonance lines which has been experi­
mentally established for Al27 nuclei in metallic 
aluminum. 14 If the structure of the crystal has 

(36) symmetry lower than cubic (for example, in gal-
As may be seen, the effective charge of the water lium ), then quadrupole effects occur even in a 
molecule obtained from the study of quadrupole re- perfect lattice without any defects. 15 

laxation in non-associated solutions is even some- Thus, from experiments on magnetic resonance 
what smaller than the usually adopted values "'0.5 e. in metals it follows that the quadrupole energy of 

An exact calculation of T2 1 taking into account nuclei is due primarily to the electric fields pro-
the dipole nature of the water molecules and their duced by ionic cores in the metal lattice; the elec-
rotational motion will be given by us elsewhere. tric fields at the nuclei due to the conduction elec-

In concluding this section we note the following. trans have symmetry close to spherical, which is 
In the presence of a stable solvated (hydrated) characteristic of S -state electrons, and as are-
ionic shell the relaxation of nuclear spin proceeds sult of their high symmetry cannot produce quad-
by means of the interaction of the quadrupole roo- rupole splitting of the nuclear spin energy levels. 
ment of the nucleus with the normal vibrations of Apparently, basically the same situation also ex-
the complex; in this case the temperature depend- ists in a metallic melt. But since in a melt the 
ence of the width of the resonance line is deter- instantaneous configurations of the ion positions 
mined by the equation3•4 which vary with time do not have any symmetry, 

(37) the fields produced at the nuclei are, gener­
ally speaking, different from zero, and give rise 
to relaxation effects, whose magnitude may be 
computed from formulas (28) and (32). 

where w0 is the frequency of the characteristic 
vibrations of the complex which amounts to ( 4 to 
16) x 1013 sec- 1• Relation (37) was verified by the 
study of the widths of electron resonance lines for 
a whole series of paramagnetic ions which form 
stable complexes in solution;3 so far there have 
been no experiments on the study of the tempera­
ture dependence of the widths of nuclear magnetic 
resonance lines of diamagnetic ions solvated in 
solution. On the other hand, if an ion does not 
form a stable solvated complex, and the motion of 
the neighboring particles consists of free diffusion, 
then relation (34) must be satisfied. A comparison 
of (34) and (37) shows that a study of the tempera­
ture dependence of T2 1 can yield a completely un­
ambiguous determination of the occurrence of com­
plex formation in solution. 

7. MELTS OF METALS 

In metallic crystals having a cubic structure 
the energy of the nuclear quadrupole moment is 
equal to zero, and the principal role in the spin re­
laxation of the nuclei is played by their interaction 
with the conduction electrons and among themselves: 

A calculation which we have made for Li and 
Na yielded values of T1 and T2 greater than 
the experimentally observed ones. 13 The Li 6, Li 7, 

and Na23 nuclei have small quadrupole moments 
and, therefore, the quadrupole effects are small. 
Al27 has a somewhat larger quadrupole moment. 
The relaxation time calculated with the aid of (28) 
is T2 (Al27 ) = 3 x 10-2 sec, which also exceeds 
the experimentally found value14 T2 = T1 = 2.1 
x 10- 3 sec by a factor of "'15. (For the evaluation 
of T 2 ( Al27 ) the following values of the constants 
were adopted: e A= e, i.e., it was assumed that 
the Al ions in the melt are singly charged; the 
metallic radius of the Al atom a = 1.4 A, I = %. 
Q = 0.156 b, N/V = 1023 , D = 2 x 10-5 and Tc 
= 2a2/D = 10-11 sec, 1+y = 3.59. The value of 
1 + y which we have utilized was calculated 10 for 
the Al3+ ion: for a singly charged ion the value of 
1 + y will probably be greater, since the anti-
shielding effect is associated with the deformabil­
ity of the electron shell of the atom.) 

Our results show that in lithium, sodium, and 
aluminum melts the quadrupole relaxation of nu-



THE 0 R Y 0 F Q U AD R UP 0 L E R E LA X AT I 0 N 0 F N U C L E A R SPINS IN LIQUID S 889 

clear spins plays a subordinate role; other mech­
anisms predominate. However, in an aluminum 
melt, so far as we can judge from our calculations, 
the rate of quadrupole relaxation of nuclei differs 
from the rate of relaxation due to the dominant 
mechanism by a factor of ,....., 10. We can expect that 
in the case of metals having a quadrupole moment 
of ,....., 1 b, quadrupole relaxation will give a contri­
bution comparable to the contribution of the mech­
anisms predominant in Li, Na, Al, and will possi­
bly become dominant. It should be noted that the 
antishielding effects, on which the rate of quadru­
pole relaxation depends in a large measure, are 
quite insignificant for the Li +, Na +, and Al + ions. 
For ions which are isoelectronic with the inert 
gases the antishielding coefficient I y I increases 
as the number of the electrons in the ion increases: 
for the series of ions Na +, K+, Rb +, Cs + the val­
ues of y are equal to 4.53, 12.84, 49.3, and 110 
respectively. 10 This shows that quadrupole effects 
will be large for heavy atoms. For example, me­
tallic indium is convenient for carrying out experi­
ments: it has a relatively low melting point and a 
large quadrupole moment (for the isotope In115 

I=% and Q = 1.16 b). We can assume that the 
antishielding effects will also be large for the In 
ion; according to Rhoderick's estimates16 made 
on the basis of an experiment in a mixed single 
crystal of InSb, y (In) ~ 1000. 

B. MELTS OF IONIC SALTS 

Formulas (28) and (32) which we have obtained 
may be found applicable to interpreting widths of 
resonance lines and the spin-lattice relaxation 
time of nuclear spins in melts of salts, for exam­
ple, of the NaCl type. The new feature which has 
to be taken into account in discussing melts of 
salts as compared to melts of metals and solutions 
of electrolytes consists of the difference in the sign 
of the charges of the ions composing the melt. This 
means that ions of different sign can appear near 
the ion under consideration as a result of the proc­
ess of diffusion; this circumstance will in some 
way affect the relaxation times T1 and T2, and 
this, generally speaking, can be taken into account 
by introducing a certain factor into the right hand 
side of (28) and (32). The functional dependence of 
T1 and T2 on the temperature and on the viscosity 
expressed by (34) and (35) will remain valid. 

We now estimate the order of magnitude of the 
factors in (28) and (32). X-ray investigations show 
the existence in liquids of a sharply pronounced 
short-range order with atomic configurations cor-

responding to close packing. 17 On the basis of this 
we can assume that atoms which are the nearest 
neighbors of the ion under consideration have a 
configuration corresponding to one of the close 
packed configurations, for example, octahedral. 
If we assume that all the atoms of this octahedron 
have charges of the same magnitude and of the 
same sign, then the field gradient 'VE at the center 
of the octahedron will be due only to the displace­
ments of the atoms from their equilibrium posi­
tions in the octahedron, the magnitude of the com­
ponents will be given by 'VE,....., eAa-4Qi, where a 
is the equilibrium distance between the atoms, Qi 
are linear combinations of the displacements of 
the atoms from their equilibrium positions in the 
octahedron, a ~ 3 A; the magnitude of Qi can 
be estimated17 from the width of the first maximum 
of the radial distribution function of the particles 
in the liquid: Qi ~ 0.5 A. 

On the other hand, let us assume that in the 
process of diffusion either ions with charges of 
different sign or vacancies have appeared in the 
neighborhood of the ion under consideration. Then, 
as a simple calculation shows, the components of 
the tensor 'VE differ from zero even in the case 
of the correct atomic configuration; the magnitude 
of the components is given by 'VE,....., eAa-3• It is 
clear that the ratio of the gradients in the second 
and in the first case is equal to a/Qi ,....., 6, while 
the ratio of the magnitudes of T2 1 amounts to 
,....., 36. Consequently, in a salt melt, if we admit 
the possibility of formation of coordination spheres 
for the ions consisting of particles of charges of 
different sign, the magnitude of T2 1 increases by 
a factor of 10 to 100 and attains a value of ,....., 105 

sec- 1 ("! 100 oe). Such an estimate of the width 
agrees with the result of Flynk and Seymour:18 

in a melt of bismuth iodide these authors were 
unable to observe the nuclear resonance of Bi209 

(I= %. Q = 0.4 b), even though their spectro­
scope permitted them to observe lines of width 
up to 40 oe. 
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