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The quantum oscillations of the volume (external) photoelectric effect in metals in a mag­
netic field are investigated in the ultraviolet region of the spectrum for electrons obeying 
an arbitrary dispersion law. The expression for the photocurrent contains, besides oscilla­
tions of the de Haas-van Alphen type, some new terms which are also characteristic of other 
optical phenomena. It is shown that a study of the photocurrent oscillations and the photo­
electron energy distribution function permits one, in principle, to determine the shape of 
the Fermi surface as well as the arrangement of the separate electron groups in the reciprocal 
lattice and also to determine the shape of the isoenergetic surfaces lying below the Fermi 
surface. The calculation is carried out for the case where the magnetic field is perpendicu­
lar to the surface. The influence of collisions between photoelectrons prior to exit from the 
metal on the oscillations of the photoelectron yield is investigated. 

1. INTRODUCTION 

THE investigations of recent years, starting with 
the work of Lifshitz, Kosevich, and Pogorelov, 1 
have brought out that it is very important to study 
the quantum oscillation effects if one of the basic 
problems of the electron theory of metals, the de­
termination of the dispersion law for the conduction 
electrons in actual metals, is to be solved.* 

The best known of these effects are the de Haas­
van Alphen effect (oscillations of the magnetic sus­
ceptibility of metals in a varying magnetic field) 
and the related Shubnikov-de Haas effect ( oscilla­
tions of the electric resistance). A careful experi­
mental study of the de Haas-van Alphen effect car­
ried out by Verkin, Lazarev, and co-workers in the 
U.S.S.R. 3 and by Shoenberg (cf. reference 4 and 
others) in England has already led to the determi­
nation of the shape of the Fermi surface in a num­
ber of actual cases. 

In the present paper we consider the external 
photoelectric effect in metals in a magnetic field 
in the ultraviolet region of the spectrum. The mag­
netic field is directed perpendicular to the surface, 
so that the electrons reach the anode freely. Under 
these conditions the photoelectron current contains, 
besides the a component which changes monotonic­
ally with H, several oscillatory components. One 
of these is due to the same oscillations of the num-

*The study of the resonance effects serves the same pur­
pose (cf. Azbel' and Kaner2 ). 

ber of states of the electrons in the magnetic field 
which give rise to the de Haas-van Alphen effect. 
The periods are in this case determined by the ex­
tremal1 (or limiting5 ) cross sections of the Fermi 
surface. 

The second component is due to the periodic de­
pendence of the transition matrix element on the 
magnetic field. It has nothing to do with the number 
of states and represents a new oscillatory effect 
which is common to all optical phenomena connected 
with transitions between bands. The study of this ef­
fect allows us, in principle, to determine the ar­
rangement of separate regions of the Fermi surface 
in the reciprocal lattice. This possibility of determin­
ing the location of the separate groups, which did 
not exist previously, is due to the presence of a 
new parameter in the optical effects: the frequency 
of light. The third component represents the inter­
ference effect. 

Another new piece of information which may be 
obtained from photoelectric experiments ( measur­
ing the energy distribution of the emitted electrons) 
is the shape of the isoenergetic surfaces lying be-
low the Fermi surface. Finally, it is an interesting 
feature of photoelectric experiments that they per­
mit us, in principle, to study in relatively weak 
fields large electron groups, whose oscillations are 
washed out under the usual conditions on account 
of the domain structure.1 In photoelectric experi­
ments one can use a narrow light beam which takes 
in only one domain. 
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In conclusion we note the important circum­
stance that the effect under consideration, just as 
the de Haas-van Alphen effect, depends practically 
only on the dispersion law and not on its genesis 
(the wave functions ) . 

2. THE VOLUME PHOTOEFFECT IN A METAL 

It is known that the absorption of light by a con­
duction electron near the surface, as a result of 
which the electron leaves the metal (surface pho­
toeffect6• 7), is possible only if the energy conser­
vation law is fulfilled, whereas the extra momen­
tum can be transferred to the surface. This effect 
occurs for the frequencies w 2::: wg, where wg 
= W /n (W is the work function). 

For a light frequency w which surpasses the 
second photoelectric threshold, w 2::: wg the so­
called volume photoeffect becomes possible, s,B,9 
in which the electron first goes from the conduc­
tion band to a higher lying band anC:: then leaves 
the metal. The photoelectrons are thus not excited 
in a thin surface layer, but in a volume of metal 
of thickness 6 ( 6 is the penetration depth of the 
light in the metal, 6 » a ) . The yield of the vol­
ume photoeffect is therefore in general much 
greater than the yield of the surface effect. 

Usually the maxima of the spectral distribution 
curves of the yield for these two types of the photo­
effect do not overlap, since wg, as a rule, lies in 
the visible or near the ultraviolet region, while 
wg lies in the more remote ultraviolet.* In the 
following we shall consider the photoeffect in the 
ultraviolet region of the spectrum, assuming that 
it can be separated from the surface effect. The 
energy of the electrons in this case is sufficiently 
large, so that one can neglect the reflection of the 
electrons from the surface potential barrier and 
from the distortions of the periodic potential near 
the surface. The calculation of the current of 
emitted electrons reduces then to the calculation 
of the current towards the surface inside the metal. 

All oscillatory effects are observed only at very 
low temperatures and in pure metals, and the pene­
tration depth of light in the metal, 6, is small 
( 6 "' 10 -s to 10 -s em). Collisions of the photo­
electrons with the phonons (or impurities ) do not 
play any role (besides, they do not change the en­
ergy of the electron to any appreciable extent). 
The collisions of the photoelectron with the other 
electrons lead, however, to a great loss of energy. 

*This is not true for all metals. 1° Contrary to previous 
acceptance, 6' 7 it has recently· been suggested9•11•12 that the 
photoeffect in alkali metals in the region 500 to 300 mp. is also 
predominantly a volume effect. 

As is known (see, for example, reference 13), 
these losses can be divided into losses due to the 
excitation of plasma oscillations and losses due to 
collisions with separate screened electrons. 

The free path length for the first interaction 
(the collective one) is equal to a few lattice con­
stants; however, the excitation of plasma oscilla­
tions is possible only after the photoelectron has 
reached a certain minimal energy Ep. From the 
experimental data on the characteristic losses of 
electrons13•14 it is known that this energy is equal 
to 20 to 25 ev for many metals. We can therefore 
choose a metal in which the photoelectrons do not 
excite plasma oscillations. 

As to the losses of the second type (the indi­
vidual losses), it appears that the corresponding 
free path length is very great on account of the 
effective screening. According to reference 15, 
this length is 100 or more times greater than the 
lattice constant for slow electrons (photoelectrons) 
in alkali metals. The calculation of l for the 
screened Coulomb interaction13•16•17 of free elec­
trons with account of the exclusion principle gives 
a value which is several times smaller. However, 
the band structure of the spectrum either forbids 
or lowers the probability for a number of transi­
tions which are possible for free electrons, which 
leads to an increase in Z. In the case where the 
photoelectron with the wave vector k1 remains in 
the upper band after the collision while the conduc­
tion electron stays in the lower band, the time of 
free flight can be shown21 to be equal to 

1: = 'rB (15rtj8)(ajk1)4 D-2. 

Here TB = n3 /me4 is the characteristic Bohr 
time, a- 1 is the screening radius (according to 
the estimate of references 6 and 13, a-1 .(:; 10-8 
em), and n-2 is a factor which depends on the 
wave functions in both bands, D2 < 1. If k1 is 
small, for example, I k 1 1 = a/4 (here D2 = % ), 
T ~ 104 TB, i.e., the time of flight is large. If both 
electrons appear in the lower band after the colli­
sion, which is possible if k1 and the width of the 
forbidden band are small, then 

't = -r:B (3rt j 8) (a2 + t..) 2 k-;3f... -'/,D-2, 

where A. is the width of the conduction band ( mul­
tiplied by m/n2). In this case D2 is always small 
(for example, of order 10-2 to 10-4), so that T is 
large again. 

The collisions lead to a decrease of the oscilla­
tion amplitude [according to reference 18, by a 
factor exp (h/ TJ.LH)] without change in the period. 
Since T depends critically on the band structure 
of the metal, it may occur that oscillations of the 
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photocurrent are observable in one metal and inob­
servable in another. It is evidently convenient to 
conduct the experiments in metals with large 
J1. = eli/m *c in strong fields ( H "' 105 oersted). 
Here the energy of the photoelectron must be be­
low the level of the discrete (plasma) losses. 

In conclusion we note that the ultraviolet radia­
tion of the metal causes not only transitions from 
the conduction band to the higher lying band, but 
also transitions from the narrow bands below the 
conduction band into states immediately below the 
barrier. 19 The two kinds of photoelectrons are 
easily separated since they have completely differ­
ent energies after leaving the metal. 

3. CALCULATION OF THE PHOTOCURRENT 

The Hamiltonian of the electron in a metal 
placed in a magnetic field can be written in the 
form 

where 

' 1 '/j e )2 
HUl)= ,~ (.-c- n- ~ A 0 +V (x)· 

'Lm. ' v c P ' 
(1) 

v =-_:___A (!.'c- v - ~ A0l. (2) 
me ' c 1 

Here V (x) is the periodic potential; A0 (- Hy, 
0, 0) is the vector potential of the constant mag­
netic field H = Hz; A is the vector potential of the 
light wave, and is equal to 

A ~= (cF/i£•)) a exp {ixx- it,)t} 

( F is the amplitude of the electric vector; a is 
the polarization vector; I a I = 1 ) . 

To solve the Schrodinger equation Hw = ili ow I 
ot we must first find the eigenfunctions of the un­
perturbed problem. Using the results of a previ­
ous paper,20 we write down the orthonormal eigen­
functions of the electron obeying an arbitrary dis­
persion law in the magnetic field:* 

'£', 1 (x) = ~ eik,x ~ eil<,z 
A,nl, VL l1L 

X ~ .!Jn(kz, k,1 )exp{ik~ (u+a~ kr)} v0r + :2 , k2, k~; x,y, z )dk2 , 

0 . (3) 

*We neglect the effect of the boundary of the metal. The 
wave function for the finite metal differs from the wave function (3) 
by an additional exponentially decreasing (at a distance -a 
from the boundary) term. Since in the calculation of the transi­
tion probability we are interested in the overlap integral of the 
eigenfunctions of the initial and final states t/J and t{l' (cf. 
below), the exponentially decreasing term can be neglected 
(this cannot be done in the calculation of the surface effect, 
where the basic integral without account of the boundary re­
duces to zero in virtue of the orthonormality). 

where v (k; x) is a periodic Bloch function nor­
malized in the "region of periodicity" of volume 
L 3 according to 

L-3 ~ /VI 2 dr = l, 

In formula (3) gn ( k2, k3 ) is the eigenfunction 
of the electron in the magnetic field in the k rep­
resentation. It is given by 

gn(kz, k3)= ~:-1 aaE ~-'!'exp{ -ia~z10(k2~k20)}cos(a2Sn (k2 )-"!__)· 
" r m' ><t o 4 

(4) 

The trajectory of the electron in the reciprocal 
space (Fig. 1) is given by the intersection of the 
isoenergetic surface E ( k) = E with the plane 
k3 = const; correspondingly, the equation of the 
trajectory K 1 = K 1 ( k2) is found from the relation 
E (K 1, k2, k3 ) = E; a 0 = (lic/eH) 1/ 2 is the radius 
of the lowest quantum mechanical orbit of the free 
electron, a/ a 0 « 1 (a is the lattice constant); 
the meaning of the area Sn ( k2 ) is clear from 
Fig. 1. 

FIG. 1 

For the sake of generality, we consider an ar­
bitrary group of electrons whose center ( K 10• k2o) 
does not coincide with the origin of a cell of the 
reciprocal lattice. The dimensionless constant A 
is found from the normalization condition: 

2rr ~ Jgn (k2, ka) J 2 dk2= I, 

The corresponding wave function for the total 
Hamiltonian H is sought in the form 

'I' (x, t) = ·~k,nk, (x) exp {- i En (k3) t;n} + <D(x, t), 

where <I> (x, t) is the perturbation term. The ex­
pansion of <I> in terms of the complete orthonor­
mal system of functions has the form 

'\' • . { iE~. (k~) It 
¢ (x, f) =· . : ~ d!?;dk~ c ' ' y'' ' ' (x) exp - 'li ' r 

~ <> J.: 1n'k3 k 1n k:J , l 

[the prime characterizes functions of the electron 
in the upper band; v' ( k; x) is a Bloch function 
for the upper band; gn' ( k2, k3 ) has a form analo­
gous to (4)]. The usual perturbation theory leads 
to the following expression for the coefficients 

CkJ.n'k3= 
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( )
2 ' ' L rr.eF . k n'k , c . . = - - .M 1 • o (E- E -n(l)), 

k1 n'k1 2~ mw k1nk1 

where the matrix element for the transition is 
equal to 

k n'k ~ " ( 1i e ) M 1 •= 4' ' (x) a -1. V- -c A0 4k1nk, {x)d't 
k1nk, k1 n'k, 

(5) 

(in this formula we neglect the factor eiK·x, since 
the wave vector of the photon IC is much smaller 
than the wave vector of the electron k: K « k). 
With the help of formula (3) we write this expres­
sion in the form 

M~;:::: = ~ g~, (k~, k;) X (k', k) gn (k2 , ks) dk2 dk~, (6) 

where 
00 

X (k', k) = 1i~ Okk' ok,k' ~ Om (k2, ks) Ok'·,k,+ma/rJ.'· (7) 
1 1 s m=-co 2 • o 

Here the am are certain dimensionless coeffi­
cients (which depend weakly on the magnetic field) 
which can be expressed in terms of the Bloch func­
tions of the conduction band and the higher lying 
band. Substituting (7) in (6) we obtain the matrix 
element for the transition in the form 

(8) 

where 

Snn' (ka) = ~ ~ g~. (k2+ maja.~, ks) Om (k2, ks) gn (k2,ka)dk2. 
m 

Using the condition a/a0 « 1 and formula (4) for 
the eigenfunctions gn (k2, k3 ) we transform 8nn' 
to the form 

Snn' {ka) = ~ g~, (k2, k3) o (k2, ks) gn (k2, k3 ) dk 2 , {9) 

where 

o (k2, k3) =~om (k2, ks) exp {ima x1 (k2 )} 

m 

is a quantity which depends smoothly on the mag­
netic field. As was mentioned already, we must 
know the exact eigenfunctions of the electron in 
the metal (Bloch functions) in order to calculate 
a (k2, k3 ). However, a number of effects in the 
magnetic field, in particular, the oscillations of 
the photoelectric current with the magnetic field, 
do not depend on the actual form of these functions. 
These oscillations are determined by the functions 
gn (k2, k3 ) and g:O.,(k2, k3 ), which depend only on 
the dispersion law. The exact wave functions are 
needed only for the calculation of the amplitude of 
the oscillations. But since a is a dimensionless 
quantity of order unity, one can estimate the order 
of magnitude of the amplitudes. 

FIG. 2 

Thus the oscillatory properties of the transition 
depend on the dispersion law for the electrons in 
the metal and not on its genesis. 

It is seen from formulas (5) and (8) that the 
transitions considered above obey the following 
selection rules: 

.ll;= ks, E~. (k;) =En (k3) + ft(l) 
(the condition k1 = k1 implies, moreover, that 
the "center of rotation" does not change during 
the transition). The trajectories of the electron 
in the initial [ K 1 ( k2 ) 1 and final [ K 1 ( k2) 1 states 
are shown in Fig. 2. Here E (k) and E'(k) de­
termine the dispersion law for the electron in the 
conduction band and the upper band, respectively. 
Since the functions gn ( k2, k3 ) decrease very fast 
(exponentially) outside the region of classical mo­
tion of the electron (see reference 20), the quan­
tities Sun' ( k3 ) and the matrix element for the 
transition will be different from zero only if the 
trajectories K 1 ( k2) and K1 ( k2) intersect each 
other (Fig. 2). Otherwise the matrix element for 
the transition is negligibly small, and the photon 
yield from this group of electrons is zero. 

Knowing the perturbed wave function, we can 
find the current of emitted electrons according to 
the known quantum mechanical formula 

." (n, k ) = ~'- (<!) dlD*. - (J)' ~) . 
1 3 J.m az dz ' 

jz (n, k3 ) represents the current corresponding 
to a given initial state n, k3. To find the total 
current Jz we must sum this quantity over all 
electrons in the metal, which gives 

L" ~' t -:-J_,_,_ -- ~---~- n k dk 
" ··-•a2 ~ exp {(E- ~) 1 \l}- 1 lz ( ' ") 3 • 

_,. () II 

(10) 

where fz (n, k3 ) denotes the average value of the 
current density. It is easily seen that the function 
1Pk1nk3 ( x) [formula (3) 1 corresponds to the cur­
rent 
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Jz= (ejfiU) aEn (k3 )jak3 • 

We calculate the current Tz (n, k3 ) with the 
help of (5) and (8) and substitute it in formula (10). 
Taking account of oktkl.• o [En' (k3) - En (k3 ) 

- :llw], and okak3 = ( 211'/L) o (k3 - k3) in the inte­
gration over dkJ., dk3, and dk3, respectively, we 
obtain 

Jz'~ reesliPL ~(e<E-1;)(6_j_}r11S ·(k)l2/aHnn'l-1 
m•a•w•a~ n,n' I ' nn 3 aks ' 

H nn' (ka) = E~. (k;)- En {k3)- fiw. (11) 
Up to this point we have not taken into account 

the attenuation of the light wave in the metal, as a 
consequence of which the photocurrent appeared 
to be proportional to the thickness of the cathode 
L. It can be shown that the consideration of the 
damping leads to the replacement of the quantity 
L in formula (11) by o, the penetration depth of 
the field in the metal (we assume o » a). Then 
the photocurrent per unit area of the surface 
ceases to depend on the thickness of the cathode, 
if L > o. 

To change the summation in formula (11) to an 
integration, we use the Poisson summation formula: 

00 00 00 

~ 1 ~ ~ 
-'.J f (n) = 2 f (0) + Li ~ e2rtipnf (n) dn, 

n=O p=-000 

and apply it to the summation over n and n'. We 
also introduce the following notations. For the cal­
culation of the quantities Snn' we must use the 
method of steepest descent, and it will turn out 
(see below) that Sun' has in the general case the 
form 

I Snn' (ka) 12 = (~ Y ~ &~~· (ks} COS (~gacx {£, k3} +"(ex}, (12) 
0 a. 

where the J~l are certain coefficients which de­
pend smoothly on the magnetic field, and the 
era (E, k3 ) are areas which determine the oscil­
lations of the matrix element of the transition; the 
Ya are certain phases, cr0 = 0, Yo= 0; J~~' rep­
resents the non-oscillatory term. 

In this way we transform (11) to the form 
00 

J -" ~ -irtp-trtq (' dk \' A<"->(S,ks) . 2 
z- .t.J Li e .1 3 .1 dS ex {(E-~)/GHi exp {zp~0S} 

It p,q=-00 p 

X exp {iq~gS' (E, k3)} cos ~~~a" (E, k3} + 'Ia I. (13) 

where 

A<a.) = e81iF'o (as·) .a<•> (k ) I aHnn' ,-1 (14) 
4rem•w• iJks s nn' 3 aka 

is a quantity which depends smoothly on the mag­
netic field. Jz in formula (13) represents the pho­
tocurrent from the given electron group. The total 
current is obtained by summing over all groups in 
the conduction band. 

Changing the integration over dS in formula 
(13) to an integration over the energy, with the help 
of the formula for the semiclassical quantization 
of the energy levels of the electron in the magnetic 
field, 1•20 

.'\ (E, k3 ) = 2~t (n + + )/~~. 
we can write the photocurrent Jz in the form of 
a sum: 

00 

JO- i dE (' dk iJS A<O) (£ k) 
z- J exp {(E -1;;)/G} + 1 J 3 aE • 3 ' 

0 
00 00 

(15) 

(16) 

J1= 2 Re ,, e-irtp I dE i dk as A<o> (£ k) 
2 {:1 ~ exp {(E- C)/G}+ 1 .I 3 aE • s 

x exp {ip ~gs (£, k3)}, (17) 

X exp{i~gaa.(E, k3 ) + i'ja}. (18) 

Here J~ is the non-oscillatory part of the current; 
J~ is the oscillatory part of the current due to the 
periodic dependence of the number of states on the 
magnetic field (analogous to the de Haas-van Alphen 
effect); J~ is the oscillatory part of the current 
due to the periodic dependence of the matrix ele­
ment of the transition on the magnetic field; J~2 
is the oscillatory part of the current correspond­
ing to the interference of parts 1 and 2, which we 
shall not write down explicitly. 

In the case of the volume photoeffect we there­
fore have to do with two types of oscillations of the 
photoyield with the magnetic field: 1) oscillations 
connected with the number of states ( J~), analo­
gous to the de Haas-van Alphen and Shubnikov-
de Haas effects etc., and 2) oscillations connected 
with the matrix element for the transition ( J~), 
which are characteristic for all optical phenomena 
(volume photoeffect, absorption of light in metals, 
etc. ) related to transitions between different en­
ergy bands. 

4. THE OSCILLATORY PARTS OF THE CURRENT 

1. The oscillatory part of the current connected 
with the number of states is given by formula (1 7). 
The integrals in (17) can be evaluated by the method 
of steepest descent, so that the final answer will 
contain the extremal Fermi cross sections Sm ( t ), 
just as in the case of the de Haas -van Alphen effect. 1 

We find 
- 00 

J l z rzreA<o><~ k >I a•s ~-·;." -·; z . r J z=-a- "'am ak2 .t.JP 'shpzsml?a~Sm(~)-~tp±::_, 
11o a m P=1 4 

(19) 
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where 

z = 2rr. 26jp.*H, p.*= efijm'c, m'= (1i 2j2rr.) aSm/oC. (20) 

In the limiting cases of weak and strong magnetic 
fields ( z » 1 and z « 1) we have: 

for z » 1, 

Jl = 2 (21t)'/,e AIO) ('" k ) asm I a•s 1-'/, {- 2 2 {) } 
z ao "• 3m at; ak2a exp 1t t-t' H 

• m 

X sin [ IXZ,Sm (C)- 1t ± "i]; (21) 

for z « 1, 

J! = 2 (2")';, A<o> (C k ) / a•s ,-';, ~ -'!, 
a3 ' am ak2 "'-! p 

o a m p=l 

X sin [PIX~Sm (C)- rr.p ± T J . (22) 

Let us estimate the relative magnitude of the 
oscillatory terms as compared with the non-oscil­
latory term J~, assuming that by order of magni­
tude 

I; 

~~ = \ dE 'i dk as A (Ol(£ k ) - r.i\ (0) 21tm ( 2mt; )'/, 
~ ~ a aE ' 3 . n• \ n• . 

We find 

(23) 

J!;J~- 1t;2(!-';rx~o)IA(O}' z~ I. (24) 

Here J\.~O> is the average value of A <O>( E, k3 ) for 
the given ( s-th) group, and A <O> is the analogous 
quantity for the basic group; m is the mass of the 
free electron; 11 = etilmc [here the oscillatory 
part of the current J~ refers to the given electron 
group (which is small, for example), while the 
non-oscillatory part J~ refers to the basic (large) 
group]. 

For an estimate of the ratio A~0 > I A <O> we as­
sume that approximately 

[ cf. formula (14)], which leads to the very crude 
estimate 

A~0>IA<ol_ (n0 ln)'f,, 

where n0 is the density of the electrons of the 
basic group, and n that of the given group. 

2. The oscillatory part of the current connected 
with the matrix element of the transition is given 
by formula (18). The calculation of J~ is analo­
gous to that of J~; as a result we have 
J2 = (2rt}1

;,""' A<o:l(C k ) I a•ao: ,-'/, ~S(t;, k;m},at; ~ 
z 'i.L..J ,3ma2 m 

CX0 •<CO k3 aa. jat; Sinh zo: 

X sin[ IX~o~n(q +1o: ± T] , (25) 

where 
Za. = 2rr.26 I [J.:H' 

tJ.: =en 1 m:c, m: = (1i 2 1 2rr.)aa~' 1 ac (26) 

[ aw ( t) is the extremal value of the area a a; 
k3 = k~ is the extremal point]. In the limiting 
cases za » 1 and za « 1 formula (25) gives: 

for Za » 1 

J2 =(2n)'f,g ''A<">('" k" )as(t;,k~m)\a•a"l-'f, 
z CXo .-'.J '>' 3m a'" 2 

a-frO ._ ak3 m 

X exp{-2rr.2 1"!H}sin[IX~a;;'(C) -t-'"l"o:± T]; (27) 

for za « 1 
~ (2rt}'/, 'V ( " ) \ a•a" \ -•;, as(t;, k~m) /at; 

Jz = - 3- "'-l J\(o:) C, kam . - 2 \ m 
a0 o:-ro ak3 m aaa. 1 at: 

X sin [a;~a~' (C) + '"l"o: ± T j . (28) 

The period of the oscillations is in this case equal 
to 

!::>. ( 1 I H) = 2rr.e I fica;:' (C). (29) 

The order of magnitude of the oscillation ampli­
tudes is estimated in the same way as under point 
1. We have 

~ 1 j2 / Jo _ 2rt (p.H)'/, _! m* A- (a) I A-(o) 
z,_? : z z Vl ga t; t; m s , (30) 

Za. ~ I: J21 Jo-~I p.H)'/, m* A (a) I j\(0) (31) 
~ z z 2rt V2 \ t; m' s ' 

where g a = ( 11 27T) I a2a a I aki I riJ2. As before, 

A~a)IA.<O>"' (n01n)113• The meaning of the quan­

tities aw< t ), m~. and ga will be explained be­
low (point 4 ) . 

3. The oscillatory component due to interfer­
ence J~2 has in general a very complicated form. 
It contains oscillatory terms of the type 

sin [IX~ (pS + qS' ± ao:) + o] 

(and a few others ) . However, if we are interested 
only in low frequency oscillations corresponding to 
small groups and in weak fields (z » 1 ), we can 
restrict ourselves to the term sin [a~ (S-a a) 
+ o ] . The quantity S -a a = aa represents the 
area complementary to aa (see Fig. 3). 

4. For the calculation of the amplitudes Jh~)(k3 ) 
and the areas a a ( E, k3 ) we turn to the formulas 
(12) and (9). The integral (9) is computed by the 
method of steepest descent. The saddle points are 
given by the intersections of the trajectory of the 
electron in the initial and final bands, t 1 and t2• 

a a ( E, k3 ) represents the shaded area in Fig. 3 
[the final answer contains the extremal Fermi 
value of this area alJ! ( t)]. 
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FIG. 3 

As already mentioned, it is necessary for the 
occurence of a photoyield from the given (for ex­
ample, small) electron group that the isoenergetic 
surfaces E ( k) = t and E' ( k) = t + :liw intersect. 
The low frequency oscillations corresponding to a 
small electron group ( J~ and J~ ) will therefore 
be confined to some narrow interval of frequencies, 

w0 ~ ilw < w < w + ll(tJ0 , 

where, in order of magnitude, tlw/w0 '""" 2 (n/n0 ) 113 

(see Fig. 4; the isoenergetic surfaces of the upper 
band are schematically represented by spheres). 
The position of the center of this interval, w0, is 
determined by the arrangement of the small elec­
tron group in the reciprocal lattice. 

FIG. 4 

In the investigation of the oscillations of the 
photoelectric yield (and also of the coefficient of 
the absorption of light and of some other optical 
quantities ) we can therefore not only determine 
the shape of the Fermi surface, as in the oscilla­
tion effects of the type of the de Haas-van Alphen 
effect, but also the location of the centers of the 
groups. 

Let us consider the spectral distribution of the 
oscillation frequencies Q = 27T/ D. ( 1/H): 

.U (w) =(lie/ e) a:' (C, w). (32) 

The function Q ( w) has the characteristic behav­
ior shown in Fig. 5, where the w~k) correspond 
to the centers of the groups which alternately in­
tersect the surface E' = t + nw as the frequency 
changes. Near the limits of the frequency interval 

FIG. 5 

in which the photoyield of the given group occurs, 
a-W<t. w), m~(w), and ga(w) become very 
small, so that the oscillation amplitude increases 
[see formulas (30) and (31)]. Away from the lim­
its of this interval we have, in order of magnitude, 
a:W ~ Sm, m~ :;; m *, and ga '""" 1. 

5. ENERGY DISTRffiUTION OF THE PHOTO­
ELECTRONS 

To find the energy distribution of the emitted 
electrons Z ( E ) = dJ z I dE we turn to the formu­
las (15) to (18). We have 

Z (E) = zo (E) + Z~sc(E) + Z~sc(E) + Z~2sc(E); 

Z0 (E) = exp <(£I-\l 16} + 1 ~ :LA<o> (E1o k3) dk3 , (33) 

Z~sc(E) = exp {(£, ~~)I{)} + 1 

00 

X 2 Re ~ e-i7rP~:;IA<0>(EI> k3)ex9{ip1X~S(E1, ka)}dks, 
P=I (34) 

Z~sc= exp {(£1_1 !;) j ()} + 1 Re ~~::I A<<>) (E I> ka) 
<>*0 

(35) 

where E1 = E - :liw is the energy of the electron 
before the transition. Here z0 (E) is the non­
oscillatory part of the distribution function; 
Zbsc (E) is the oscillatory part of the energy dis­
tribution function of the photoelectrons connected 
with the number of states; Z~sc (E) is that part 
connected with the matrix element of the transition. 

The calculation of the integrals (34) and (35) by 
the method of steepest descent leads to the expres­
sions 

1 -- 1 2 (21t)'/• (Ol(E k ) I iJ2S ,-•;, asm 
Zosc(E)- exp {(£1- !;) I 9} + 1 ao A I> 3m iJki m iJEI 

00 

X ~p-'l•cos[p1X~Sm(EI)~1tp±-i], (36) 
P=l 

2 1 (21t)'/, 
Zosc(E) = exp {(lh- !;) I 9} + 1 a;-

>< ~ A<<>>(Elo k~m) I• am ---; COS IX~a;;' (El) iJS(E ka ) I iJ2a r-•;, [ 
"'H j)£1 i)k3 m 

+ia±i]· (37) 

In contrast to the saturation current Jz, the 
oscillations of the energy distribution function of 
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the photoelectrons are not determined by the ex­
tremal Fermi cross sections Sm ( t), aW ( t), but by 

the extremal cross sections Sm ( E1 ), a~( E1) 
corresponding to the given energy E1 = E- tiw. 

The investigation of the oscillations of the en­
ergy distribution function of the photoelectrons 
with the magnetic field permits us, in principle, 
to determine any arbitrary isoenergetic surface 
besides the Fermi surface E ( k) = t. 

Let us now consider the function 
E 

Jz(E)= ~ Z (E) dE. 
0 

This function is connected with the current­
voltage characteristic of the photoelement J ( V ) , 
i.e., the dependence of the photocurrent on the volt­
age V at the anode of the photoelement, through 
the relation J ( V) = J z - J z ( - e V) (here J z 
= Jz ( oo) is the saturation current). With the help 
of formulas (36) and (37) we obtain 

00 

J~ = 2 (2"/'' At0l (£1 , k8m) I~~ ~-'!• ~ p-'1• sin [pa~Sm (Ei) 
(1,0 oka m p=l 

-!tp±-i-]· (38) 

J~ = (2'1!;)1
" "' A<<>)(£ k" ) I o2aa ,-•;, as ( £1. k:m) J o£1 

~ 3 L.J 1' sm 2 m 
(1,0 a +O ok8 m oa" I o£1 

X sin [ <X~o:' (£1) + ;. ±;}. (39) 

The order of magnitude of the amplitudes of the 
oscillatory terms are estimated in analogy to what 
we did before (Sec. 3, point 4 ): 

J!(EI I J~ (E)~(l lit Jl2) (p..H I ES1• A~o) I A_<ol, (40) 

J!(E)I J~(E) ~(gal2~tJf2)(p..H I El)'1'(m· I m:) x~·) I A_(o). 
(41) 

The Jz (E) oscillate with the magnetic field with 
the same frequencies as Z ( E ) . However, the 
function J z ( E ) not only oscillates for variations 
of the magnetic field, but also for variations of E. 
This leads to oscillations of the current-voltage 
characteristic of the photoelement J ( V) as a 
function of the voltage at the anode V. The period 
of these oscillations is equal to 

-2; asm • t:.E = 2~t<X0 a£1 = p.. H. (42) 

Correspondingly 

t:.V = p..H; je, (43) 

where y = m/m* for Jbsc(V) and y = m/m~ 
for J~sc(V). For H = 104 we have t~.V = l0-4yV. 

The instability of the potential at the anode, oV, 
the non-nonochromatic nature of the light, ow, and 
collisions of the photoelectrons before leaving the 

metal can lead to a smoothing out of the oscillations 
of the current-voltage curve. In order for these 
oscillations to be observable, the following con­
ditions must be fulfilled: 

eW ~p..·H; li.llw~{lo·H. 

We already mentioned (see Sec. 2 ) that the colli­
sions of photoelectrons with the conduction elec­
trons may give rise to a lowering of the amplitude 
of the oscillations of the total photocurrent. In the 
investigation of the oscillations of the energy dis­
tribution of the photoelectrons another effect will 
superpose itself on this effect: the "intermingling" 
of the electrons as a consequence of the collisions. 

The experimentally observed oscillations can 
be enhanced by applying a variable saw-tooth volt­
age on the anode of the photoelement and including 
a resonant circuit tuned to the frequency v = fV0/D..V, 
where f and V 0 are the frequency and the ampli­
tude of the sawtooth voltage. 

The authors express their gratitude to I. M. 
Lifshitz and M. I. Kaganov for comments on this 
work. 
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