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A method is described for measuring the speed of propagation of weak disturbances behind 
the front of strong shock waves. The existence of two sound velocities, corresponding to the 
elastic and plastic states of the material, has been detected. With the aid of the techniques 
which have been developed, the sound velocities and isentropic compression moduli of alu­
minum, copper, iron, and lead have been determined in the pressure range 0.4 to 3.5 x 106 

atmos. On the basis of the experimental results so obtained, the magnitudes of the thermal 
energy, the temperatures of the shock compression, and the Gruneisen coefficients have 
been estimated. 

INTRODUCTION 

THE new methods of studying the properties of 
matter at high pressures are based on the use of 
strong shock waves.1•2 A determination of two of 
the wave parameters - its velocity of propagation 
and the velocity of the mass of material behind the 
front - permits the pressure and density in the 
shock compression to be found. 

A third important kinematic parameter of a 
shock wave is the speed of sound within the mate­
rial compressed by the shock. Its value charac­
terizes the speed with which small disturbances 
(weak shocks and relaxation waves) are propa­
gated through the compressed material. A knowl­
edge of the speed of sound, in this sense, is of un­
doubted interest, not only for geophysical investi­
gations, but also for other investigations connected 
with the propagation of sound and shock waves, and 
in particular for properly setting up experiments 
to determine dynamic compressibility. 

Measurements of sound velocity play a large 
part in the study of the equation of state. It is 
well known that a shock compression increases 
the internal energy of a body by the amount .t.E 
= -!Pr(v0 -v), where Pr is the pressure in the 
shock, v0 is the initial specific volume, and v 
is the specific volume behind the shock wave front. 
On the diagram of pressure vs specific volume 
(Fig. 1), .t.E is equal to the area of the triangle 
OAB. The energy thus acquired is partly spent 
in overcoming the elastic repulsive forces, in­
creasing the elastic potential of the lattice by an 
amount equal to the area of the curvilinear triangle 
0 1DA. 

FIG. 1 
The remaining part, represented by the shaded 

area in the diagram, is liberated in the form of 
thermal energy, heating up the material and in­
creasing its entropy. As a result, the points on 
the dynamic adiabatic lie on different isentropics 
Ps above the curve for elastic or cold compres­
sion Px. Through the relation -v2 (8P/8v)s = C2, 

measurements of the speed of sound behind the 
front of a strong shock wave determine the slope 
of the isentropics - in other words, the isentropic 
compressibility of the material - in the extreme 
high pressure region of hundreds of thousands or 
millions of atmospheres. 

In the present study we present methods of 
measuring the speed of sound behind the front of 
strong shock waves, and the results of measure­
ments on aluminum, copper, lead, and iron in the 
range of pressure from 4 x 105 to 3.5 x 106 atmos. 
On the basis of the experimental results obtained, 
the isentropic derivatives have been calculated and 
the thermal energies and temperatures in the shock 
have been estimated. The Griineisen coefficients 
have also been estimated, with somewhat less 
accuracy. 
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1. MEASUREMENTS OF THE SPEED OF SOUND 
BY THE LATERAL RELAXATION METHOD 

By definition, the speed of sound is the speed of 
propagation of small disturbances with respect to 
the moving material. Since at the wave front 
C + U > D ( U being the bulk velocity of the mate­
rial behind the shock wave front and D the velocity 
of the front), it follows that any disturbance origi­
nating behind the shock wave front will overtake 
the front, and will produce changes in all the pa­
rameters, including the kinematic parameters U 
and D themselves. This permits measurements 
to be made of the velocity of propagation of acous­
tic disturbances, since it registers their arrival 
at the shock wave front. 

FIG. 2 
In the method of lateral relaxation, the shock 

wave moves along a cylindrical sample with a 
stepped shape (Fig. 2). The surface of the shoulder 
acts as a source of rarefaction waves. Expansion 
waves propagate with the speed of sound through 
the shock in the metal and overtake the shock wave 
front, causing a reduction of pressure in the periph­
eral zone of the sample. 

Let us consider the two positions of the shock 
wave front at the instants t and t + D.t. Let the 
point 0 separate the relaxed portion of the front 
from the unrelaxed part. After the time D.t the 
shock wave has progressed a distance DD.t, and 
the metal particles which were originally at point 
0 have been displaced along behind the front for 
a distance UD.t. After the same interval D.t the 
relaxation waves will have reached a sphere of 
radius CD.t with its center at 0 1. Since the 
motion of the rarefaction waves caused when a 
shock wave passes around an internal angle is 
self similar, the trajectory of the boundary point 
is a straight line, making a constant angle of re­
laxation a with the direction of propagation of 
the shock wave. In the right-angled triangle 0 1AB 
we have AB = .J ( CD.t )2- ( b- U )2 D.t2 . The same 
leg in the triangle AOB is AB = DD.t tan a. Equat­
ing, we obtain the following expressions for the 
tangent of the relaxation angle and the speed of 
sound: 

tano; = V(Cj D)2 - [(D- U) 1 DF, 

C = D Jl{taD.o;) 2 + [(D- U) I D] 2 • 

(1) 
(2) 

Thus, for measurements of the speed of sound 
by the lateral relaxation method, if the parameters 
D and U for the shock wave are known, the tan­
gent of the relaxation angle a must be determined 
experimentally. 

FIG. 3. a- Scheme of ex­
periment for determining the 
relaxation angle. b- Front 
of the flying material. 
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The general scheme of the experiment for 

measuring the angle a is evident from Fig. 3. 
Until the instant when the shock wave emerges 
from the sample slab, the relaxation waves create 
a region of reduced pressures and lower throw-off 
speeds on the wave-front surface. The velocity of 
the free surface of the sample therefore falls off 
from point B toward point A, as shown schemat­
ically by the lengths of the arrows. The boundary 
of the unrelaxed region is found by measuring the 
throw-off velocities, or (which amounts to the 
same thing) the difference in the time of flight of 
the metal to a Plexiglas plate P fixed a short dis­
tance away from the sample. The process of the 
collision of the thrown -off surface with the Plexi­
glas surface is determined with a double-objective 
slit photo-chronograph with a type SFR-3 rotating 
mirror3 having a sweep speed up to 6 km/ sec. A 
break in the profile of the flying material (see 
points B' in the sketch of the photochronogram, 
Fig. 3) determines the boundary of the unrelaxed 
region. Knowing the diameter of the shoulder d, 
the height h of the sample, the scale of the photo­
graph k, and the distance B'B' measured on the 
film, we find the quantity of interest to us from the 
formula 

tano; = (d- kB' B') I 2h. (3) 

where k is the ratio of the dimensions in nature 
to the dimensions on the film. 

The shock wave parameters necessary to evalu­
ate the speed of sound from (2) are determined in 
separate experiments. If the dynamic adiabatic is 
known, it is sufficient to measure a single param­
eter of the shock wave, for example its velocity D. 

2. RELAXATION WAVES-ELASTIC AND PLASTIC 

At pressures of 300 to 500 x 103 atmos, the photo­
chronograms recording the time differences in the 
shock along the indicator surface differ fundamen-
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tally in nature for materials having different me­
chanical properties. With water, for example, the 
photograph records a sharp bend at the boundary 
of the unrelaxed zone (see Fig. 4a). On the other 
hand, with a steel sample the curve has a rounded 
contour without sharply defined boundaries to mark 
off the region of the relaxation waves (Fig. 4b). 

l \ 
' 

FIG. 4. Experimental 
photochronograms. Velocity 
of travel of the light across 
the film is 6 mm/microsec. 
Direction of motion is shown 
by the arrow. 

On the basis of the pictures obtained, it can be 
assumed that for rigid materials the more slowly 
moving particles of the peripheral zone retard the 
neighboring portions of the unrelaxed region, which 
originally received the maximum momentum. In 
practice, if a thin layer of water or alcohol is ap­
plied to the metal surface to receive the momen­
tum of the free surface, it permits the distribution 
of velocities across the sample diameter to be re­
corded more clearly, and the boundary of the unre­
laxed zone to be determined with high precision 
(see Fig. 4c). Nonetheless, the difference in flight 
time for different parts of the liquid layer confirms 
in basic outline the picture derived above of a 
gradual decrease of velocity in the relaxed zone, 
and a large relaxation angle. 

Table I gives the results of relaxation angle 
measurements for water, copper, and iron at 
relatively small shock pressures. The sound 
velocities C* and the corresponding compressi-

. bility moduli p0C*2 have been calculated from 
the observed relaxation angles. In Table I these 
quantities are compared with the values of the 
derivatives of the dynamic adiabats dPr /da, 
which for low pressures characterize the isen­
tropic compressibilities of the materials with 
reasonable accuracy. For water the experimen-

tally measured modulus p0C*2 is somewhat 
smaller than the derivative of the dynamic adiabat, 
in agreement with the theory of the subject; for 
copper and iron it is considerably greater- ap­
proximately 1.5 times. 

The data given in the table prove beyond doubt 
that in the metals under consideration there are 
wave systems propagating with speeds greatly ex­
ceeding the isentropic velocity of acoustic waves 
of volume compression. 

In order to understand their origin, let us con­
sider the variation in the state of stress of a metal 
which has been compressed by a shock wave, when 
a plane relaxation wave acts upon it. The elasto­
plastic properties of an isotropic medium are char­
acterized by three constants: the Young's modulus 
E, the Poisson ratio J.L, and the critical shear 
stress ak. Under the influence of the relaxation 
wave the compressive stress in the direction nor­
mal to the relaxation front decreases by some 
amount ~Pn, and in a direction parallel to the 
front it decreases by ~p 7 • From the symmetry 
conditions in the planes parallel to the relaxation 
front, two of the principal stresses are equal, and 
there will be no deformation parallel to the front. 
This condition leads to the identity 

~p-r- [L (~P-r + ~Pn) = 0, 

which enables us to connect the intensity of the 
relaxation wave 

with the difference between the principal stresses. 
As long as 

the medium behaves like an elastic body, with a 
velocity of propation for longitudinal elastic waves 
C* = .,J (K8 + o/aG )/ p • In this expression, K8 

= E/3 ( 1 - 2J.L) is the isentropic modulus of volume 
compression, and G = E/2 ( 1 + J.L) is the shear 
modulus. When 

~Pn >[(I- [L)/(l-2p.)]2J akJ 

the medium changes to a state of plastic flow, for 
which the shear modulus is taken to be zero. Under 
these conditions the speed of the "plastic" relaxa­
tion waves C = .,J K/ p , just as in the case of 

TABLE I 

Material I o:, deg I D.km/sec\ U,km/sec\C*,km/sec[ 
PoC*2 • t dPrfda, l 

11. 10" d/cm2 1010 d(cm2 
I 

Water 

I 
47.5 

I 
4.42 

I 
1.52 

I 
5,60 

I 
31,4 

I 
34.2 

I 
Copper 41 5.24 o:87 6.33 357.8 288.8 0.34 0.82 
Iron 46.5 5.34 o;98 7:15 401.3 298.2 0.28 0,77 
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liquids, is determined by the isentropic modulus 
of volume compression Ks. The velocity ratio 

CJC = v = J/(1 + p.)/3 (1- p.). 

depends only on the Poisson ratio. 

(4) 

The existence of two speeds, "elastic" and 
"plastic," under the experimental conditions of 
Fig. 3 leads to the appearance of two concentric 
zones of relaxation on the wave front surface -
an inner "elastic" zone of weak relaxation and an 
external "plastic" zone. 

Making use of the relation (4), we can calculate 
from C* the value of the isentropic modulus Ks 
= p0C2 = p0C*2v2• For both metals the values so 
obtained, Ks ~ 240 x 1010 d/cm2, are somewhat 
smaller than dPr /da, confirming the theory 
proposed above for the phenomenon. 

The elastic relaxation zone is weakly developed 
in materials such as lead which have a large Pois­
son ratio and a small value of critical shear stress. 
Because Ok_ decreases with temperature, it would 
seem at first sight that the high temperatures in 
a strong shock should lead to the disappearance 
of the elastic relaxation wave for all materials. 
However, this is countered by the high pressures, 
which increase the melting temperature4 and raise 
the critical shear stress. Thus, according to 
Bridgman's data,5 the application of pressures of 
25 x 103 and 50 x 103 atmos increases 2~ for 
soft iron from 1200 kg/cm2 to 6600 and 12000 
kg/cm2 respectively. For copper at these pres­
sures 20k_ is equal to 1050, 3000, and 4900 kg/cm2 

respectively. In view of these statements, it is 
quite possible that longitudinal elastic waves will 
exist at shock pressures of 106 atmos and above. 

In relation to the method, the presence of an 
elastic zone makes the accurate determination of 
the boundary of the "plastic" relaxation much more 
difficult. The method described in the following 
section does not have this drawback. 

3. THE OVERTAKING-RELAXATION METHOD 

In the overtaking-relaxation method we study 
the collision between a plate and a sample, made 
of materials with known dynamic adiabats. In the 
simplest variant of the method, the plate and 
sample are made of the same material. From the 
surface of impact, shock waves OB and OA travel 
through the sample and the moving plate (see the 
x, t diagram, Fig. 5). At the instant the shock 
wave emerges from the rear surface of the plate 
(point A) a centered rarefaction wave is set up 
which overtakes the shock wave and weakens it. 
The occurrence of the first a -characteristic on 
the shock wave trajectory takes place at a distance 

I= [(1 + M)J(I- M)]6, (5) 

where ~ is the thickness of the striker plate and 
M = (D- U)/C is the Mach number. The relation 
(5) enables one to find M, provided that there ac­
tually is an overtaking, and consequently to find C 
also, if D1 - U1 is known. This form of the method 
was proposed by E. I. Zababakhin in 1948. 

FIG. 5 

Since the determination of the distance l, where 
the wave begins to slow down because of the pres­
ence of the faster elastic relaxation wave, is beset 
with considerable experimental error, it is expe­
dient to change the form of the method and find 
the time tm of arrival of the shock wave at a 
given point m, already known to lie on the re­
laxed portion of the shock wave trajectory. In this 
way one finds the slope of the a -characteristic 
Warn =Urn+ Cm that passes through the origin 
of the x, t diagram and the point m, whose coor­
dinates are Xm and tm. Then by measuring the 
material velocity Urn at the same point directly, 
or by determining it from a known shock adiabatic 
equation, we find the velocity of sound Cm = W am 
-Urn from the speed of the shock wave. In an ex­
panded form, it is not difficult to show that 

(6) 

where a1 = D1/(D1- Ut) and D1 are the param­
eters for the unrelaxed region. 

Thus, the measurement of the velocity of sound 
by the overtaking-relaxation method reduces to the 
experimental determination of the shock wave tra­
jectory in x, t coordinates, plus a measurement of 
the material velocity at one or a number of points 
on this trajectory. 

The whole of the above treatment is valid under 
the assumption that the a -characteristics are 
straight lines everywhere in the region OAm, with 
a slope W a = U + C = const. Let us go into this 
question in more detail. When two similar mate­
rials collide, three regions of flow can be distin­
guished in the x, t plane (see Fig. 5): I -the re­
gion OAB; II- ABn; and III- Bnm. In regions 
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I and II the flow is isentropic, since in region I 
the value of W a is constant over the whole re­
gion, and in II it is constant over each a -char­
acteristic. In region III the flow is not isentropic, 
since the intensity of the shock wave (and conse­
quently also the entropy of the material behind its 
front ) decreases beyond the point B, where the 
relaxation wave traveling from point A first 
overtakes the shock wave front. Here, in contrast 
to region II, the Riemann invariant f3 is not con­
stant, and consequently W a is not constant either. 

Having determined the velocity of sound at the 
point m by the method outlined above, we then 
approximate the characteristic Anm by the 
straight line Am, introducing thereby a certain 
inaccuracy. In order to estimate the error, some 
numerical calculations have been made of the mo­
tion of a decaying shock wave in an aluminum test. 
piece. In this calculation the equation of state 

P- Px = (n- l)v-1 (E- Ex), Px =a [(v 0 Jvt -I}, 

was used, taking into account not only the elastic 
terms but also the thermal terms in the pressure 
and energy. Different values of n from 1.67 to 4 
were used in the computations, corresponding to a 
variation of the Griineisen coefficient from % to 3. 

The calculations showed that in aluminum at 
plastic shock velocities of 5.6 km/sec, at distances 
of ten or more times the thickness of the plate, the 
maximum error in the sound velocity did not ex­
ceed 1.5%. At this point the pressure at the front 
of a decaying wave amounts to about one half of its 
original value. The error is smaller the closer 
the measuring region is to the portion of the shock 
wave not reached by the relaxation. A similar cal­
culation has also been carried out for lead with the 
same results, using the equation of state taken 
from reference 6. 

For a collision between plates of unlike mate­
rials, we must know not only the shock adiabatic 
for the striker plate but also the relation between 
the material velocity and the sound velocity in the 
rarefaction wave. In this case the computation of 
results is somewhat more complicated, since at 
the collision boundary there is a discontinuity at 
which the a -characteristics are refracted as 
they pass. 

There are two possible cases of collision: when 
the material of the test piece is "softer" and when 
it is "harder" than the material of the striker plate. 
By the terms "softer" and "harder" we mean a 
flatter or steeper slope of the Hugoniot adiabat for 
the given material in P, U coordinates. In both 
cases the refraction of the a -characteristics can 
easily be taken into account with the aid of the x, t 
and P, U diagrams. 

4. EXPERIMENTAL RESULTS 

A determination of the speed of sound behind 
the front of strong shock waves presupposes a 
knowledge of the dynamic adiabats. In working 
out the experimental data of the present investi­
gation, the dynamic adiabats given in reference 6 
for aluminum, copper, lead, and iron were used. 

In the first series of experiments the decay 
curves of shock waves were recorded in test 
pieces of aluminum, copper, lead, and iron when 
struck by a 2 mm aluminum plate. The speed of 
the plate was 5.60 km/sec. In order to record 
the trajectory of the shock wave in the test piece, 
which was made up of several plates, electrical 
contact pickups were introduced through small 
drill-holes. The successive short-circuiting of 
the pickups by the shock wave was recorded on 
a single-sweep cathode ray oscillograph. The 

TABLE II 

Metal I DAJ• 
km/sec Xm, nun I lm.msec I Dm, I 

km/sec 
Pm, j 

10"d/cm, 
om 

I Cm, km/sec 

I 9,13* 69,3* 1,442* 
Aluminum I 9,13 14.20 1.:>58 8.52 54,5 1.383 8,84 

1\J.l6 2.205 7,92 41.2 1.320 8.13 
6.69* 108.7* 1.374* 

Copper 10.45 10,\1.5 1.6\)7 5.92 69:2 1.284 6.32 
14.\14 2.399 5,54 52.4 1,237 5.95 

4.91* 105.2* 1. 626* 
Lead 10.34 6.47 1.373 4.16 65.6 1.502 4.24 

9,45 2.133 3.72 46.4 1.420 3,85 
7.01* 104.5* 1. 371.* 

Iron 10.31 10.93 1.656 5.76 54,2 1,263 6.70 
14.\JO 2.374 5.34 41.5 1.228 6.12 

*The marked states are in the unrelaxed re!Q.on. 
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TABLE m 
Metal 

- -Alu min urn 7.06 12.50 1.194 

- -
8,67 8,00 0,992 

Cop per 11,00 1.398 
15.00 1.981 

- -
8.61 6,00 0.988 

Lea d 9,00 1,572 
12,00 2.225 

- -

Iron 
8.54 8,00 0.940 

11.0 1,329 

*See footnote to Table II. 

states in the striker plate and in the first thin 
screening plate were found graphically, from the 
intersection of the Hugoniot adiabat for aluminum 
with the adiabatic for the test piece on the pres­
sure-velocity diagram. From the time delays 
found experimentally and the distance between the 
pickups, the trajectory of the shock wave was con­
structed and the wave velocities in the different 
portions of the trajectory were determined. In 
each experiment the recording was carried out 
over several base-lines. 

The results of the measurements are given in 
Table II~ Here tm is the time from the instant 
of collision, and xm is the distance from the col­
lision surface. In the second column of the table 
are shown the speeds of the shock waves passing 
through the aluminum plate after the collision. 

In the second series of experiments the ampli­
tude of the unrelaxed wave was increased to 1.0 
x 106 atmos for aluminum and to 1.8 x 106 atmos 
for the other metals. A 1.5-mm steel plate was 
used as the striker, moving at 5.71 km/sec. In 
order to make the decay curves observable, a 
thin aluminum film was applied to the surface of 
the test piece parallel to the collision surface. 
When the shock wave emerged at the boundary 
of the film and the test piece, the film was torn 
away from the test piece and was projected with 
a velocity W Al characterizing the amplitude of the 
wave at that cross section of the sample. The time 
(and consequently also the velocity with which the 
film moved) was recorded on a velocity photo­
chronograph by the illumination from the shock 
wave in the air. The illumination was produced 
at the instant of the first movement of the film, 
and stopped as soon as it collided with a Plexiglas 
barrier, placed at a distance of 8 - 12 mm from 
the test sample. The transition from the speeds 
of motion of the aluminum film to the material 

3.77* 107.2* 
3.54 97.5 
2.77* 200.6* 
2.47 169.2 
2.12 135.2 
1. 77 104.6 
2.82* 197.3* 
2,34 146.7 
1.84 100.8 
1.56 78.0 
2.86* 191,4* 
2.62 168,0 
2.12 122,3 I 

"m 

1.561* 
1,534 
1.5Hl* 
1.475 
1.422 
1.365 
1.842* 
1.734 
1.616 
1.545 
1.502* 
1.472 
1.405 

em, 
km/sec 

-
9,76 
-

7,7R 
7 .1~{ 
6.71 
-

5.16 
4.62 
4.2!1 

-
8.49 
7.85 

velocities behind the shock wave front was ac­
complished with the aid of special calibrating ex­
periments, in which measurements were made of 
the velocity acquired by an aluminum film under 
the influence of shock waves of known amplitudes. 
The decay curves U (x) for the four metals under 
investigation are shown in Fig. 6, together with the 

qkm/sec 
4.0 

FIG. 6 
x,mm 

experimental reference points. A knowledge of the 
U ( x) curve makes it possible, with the aid of the 
known D, U relationships, to proceed success­
ively to the D (x) curve and the curve t (x) 

X • 
= J dx/D. The subsequent treatment of the ex-

pe~iment in the second series was identical with 
the treatment of the experiments in the first series. 
The results so obtained are shown in Table III. 

The chief difference in the experiments of the 
third series (Table IV) consisted in a further in­
crease of the projection velocity of the steel 
striker. Here the speed of sound was measured 
at pressures exceeding 1.5 x 106 atmos for alumi­
num and 3.5 x 106 atmos for copper, lead, and 
iron. 
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TABLE IV 

Metal 
Pm• I 

10"d/cmi 
a I Cm, 

m km/sec 
I 

Aluminum 195.5 1.761 11.74 
160.0 1.701 11.23 

Copper 379.6 1.694 9.48 
311.7 1:638 8,93 

Lead 385.0 2.177 6.56 
279.5 2.003 5.92 

Iron 347.8 1.650 9.98 
284.9 1.600 9.53 

The experimental values of the sound velocities 
made it possible to find the dependence of the 
Mach number, ( D - U) I C, and the tangent of the 
relaxation angle, tan a, on the degree of com­
pression. The Mach number, as is well known, 
expresses the relative velocity of the relaxation 
wave and the shock wave. In its turn, tan a de­
fines the region of the shock wave which has been 
reached by the relaxation wave produced when the 
wave front meets a source of perturbation. Both 
these quantities can be calculated either from the 
propagation velocity C of the compressional 
waves, or from the velocity C* of longitudinal 
elastic waves. In this connection, 

M• =vM, 

Note that when cr = 1 the magnitude of tan a* 
is finite and equal to ..j 2 ( 1- 2J.L)/( 1 + J.L) , whereas 
tan a drops to zero when cr = 1. 

tan a. 
1.0 
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FIG. 7. Dependence of Mach number (dot-dash curves) and 
tan 0: (full curves) on the degree of compression. 

Figure 7 shows the experimental values of M 
and tan a for the four metals. The values of 
tan a for very high pressures lie in an extremely 
narrow interval from 0.66 to 0.73, regardless of 
the fact that these metals have different compressi­
bilities. Even more striking is the fact that the 
same values of tan a at high values of compres­
sion are also possessed by water, paraffin, and 
Plexiglas, according to measurements by the au­
thors. Apparently it is possible to use the value 
tan a ~ 0. 7 for very strong shocks waves in other 
materials also. 

It is essential to know the values of the Mach 
numbers and relaxation angles in order to set up 
experiments for investigation of dynamic com­
pressibilities in a proper manner. It has been 
shown above that during the collision of the striker 
with the test piece the Mach number, through the 
relation (5), determines how far the shock wave 
propagates up to the time when the relaxation wave 
reaches it; i.e., in other words it determines the 
permissible value of the base line for measuring 
D. In its turn, tan a imposes conditions on the 
ratio between the diameter of the test sample d 
and its height h. In order to preserve a region 
near the axis of the sample cylinder which is not 
affected by lateral relaxation, where the shock 
wave parameters can be measured, the condition 

d > 2h tan IX• 

must be fulfilled. 
For high degrees of compression and corre­

spondingly high pressures, the amplitude of the 
relaxation shock wave becomes negligibly small 
in comparison with the pressures under study. 
This permits the use of the values M and tan a 
in place of M* and tan a* in calculating sample 
dimensions. The above considerations were taken 
into account in setting up the experiments whose 
results are given in references 1 and 2. 

5. THE ISENTROPIC COMPRESSmiLITY OF 
METALS 

Let us generalize the results so far obtained 
by expressing the modulus of isentropic compres­
sion in the form of a power series: 

n 

Ks = PoC~ = ~ bk(a- I)k-I. 
k=I 

Integrating (7) leads to the function 

n 

I (a)=~ bkk-1 (a- !)k. 
k=I 

(7) 

(8) 

At P = 0 and cr = 1, I (cr) has a contact of the 
third order with the isentropic which passes through 
the origin of coordinates, and a second order con­
tact with the Hugoniot adiabat. This circumstance 
determines the relations between the first three 
coefficients of (8) and the coefficients in the ex­
pression for the dynamic adiabatic: 

n 

Pr = 2] ak (a - 1 )k. 
k=l 

It is easy to show that b1 = a1o b2 = 2a2, and ba 
= 3a3 - h'po ( a1 + a2), where 'Ypo is the value of 
the Griineisen coefficient for the lattice under nor-
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Metal 
k=l 2 

Aluminum 73.1 305.4 
Copper 137.0 543.4 
Lead 41,4 203.4 
Iron Hl6.3 -157.0 

mal conditions ( P = 0; T = 20° C). The values of 
the coefficients a1, a2, and a3 are borrowed 
from reference 6. For aluminum, copper, and lead 
'Ypo is taken equal to 2.09, 1.98, and 2.46 respec­
tively. The coefficients b4, b5, and b6 are chosen 
to fit the experimental data. The numerical values 
of the coefficients are shown in Table V. For iron, 
the chosen coefficients determine the isentropic 
modulus in the interval 1.20 < a < 1.8. These co­
efficients are not related to the parameters of iron 
under the initial conditions, since at a= 1.22, 
according to Bancroft2 there is a break in the 
compressibility curve caused by a phase tran­
sition. 

FIG. 8. Dependence of isentropic compression modulus K8 

on the degree of compression. o- initial value of K s = p0C~ • 

Figure 8 shows the variation of the isentropic 
modulus with the degree of shock compression. 
The isentropic modulus increases rapidly with 

3 5 

194.8 -444 519 -106 
266.8 4037 -11745 9650 
184.2 248 -439 167 

3862.2 -5448 3077 -

the amplitude of the shock wave. Thus, for lead 
at a= 2.1 and Pr = 3.2 x 1012 d/cm2 it exceeds 
its initial value by more than ten times. 

The experimental dependence of the speed of 
sound Cr = .../ K8 I Po on the degree of shock com­
pression is shown in the left-hand side of Table VI 
for the four metals under investigation. 

6. UPPER LIMIT OF THE CURVES OF "COLD" 
COMPRESSION. ESTIMATES OF THERMAL 
ENERGIES AND TEMPERATURES 

Let us assume that the total pressure is the 
sum of the "cold" and thermal pressures: Pr = Px 
+ PT. Inasmuch as (aPT /ap )8 > 0, it is possible 
to establish unconditionally that Ck(a) < C}(a, T), 
where Cx (a) is the speed of sound at T = 0. 
Hence it follows that 

a 

Px(a)< ~p0Cfda=/(a)-/(ak)=/(a,_ ak), (9) 

ak 

where ak = p/ Pk• and Pk is the density of the ma­
terial at T = O"K and P = 0. Thus the function 
I (a, ~) appears as the upper limit of the possible 
positions of the cold compression curve. The rela­
tive positions of the dynamic adiabatic, the function 
I (a, ak), and the cold compression curve Px (a) 
taken from reference 6, are illustrated in Figs. 9 
and 10. Comparison shows that the curves Px (a) 
are located below I (a, ~), in agreement with 
the above. It is characteristic of all the metals 
that I (a, ak) is considerably closer to Px (a) 
than to Pr. The presence of a difference Pr 
-I (a, ak) was the first experimental evidence, 
ten years ago, of the large part played by thermal 
pressure in the shock compression of solid bodies. 

TABLE VI 
CI'(km/sec) from ref, 7 I cr (km/sec). calculated· 

AI Cu Pb I Fe AI j Cu j Pb 

4,70 2.37 I L 
4.67 1.1 6.23 6.16 

I 
2.:14 

1.2 7.17 ;),53 2.83 I 7 .ot, 5.46 2.80 
1.3 8.03 6.36 3.29 

I 

6,91 7.87 6.21 3.~4 
1.4 8.81 7:12 3.74 7.8:3 8.67 6.\l8 :l. 70 
1.5 9,57 7.83 4.18 8.7(! 9.52 7.80 /1. 1;) 
1.6 10.34 8.5\J 4.60 9.54 10.31 8. 73 4.60 
1.7 11.10 0,67 4.98 

I 
10.40 11.04 9.80 4.\18 

1,8 5.34 5.3~ 
1.\) .-.- (i/ ;l . .:JK 
2.0 J, (18 I ,-, .H~ 
2.1 G.2ti I li. 1:-; 
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" 1!10 d/cm2 

4,0.----,,----,----~----~ 

~0~--~----~~~----~ 

I 

FIG. 9 

Pl/2djcm• 
1.----.-----.----,-----,---~ 

FIG. 10 

The thermal energy of the shock compression is 

a 

that the upper limit of the position of the compres­
sion curve at the absolute zero of temperature 

ET- Eo = f- Pr (a- I) j p0a - ~ (Px / poa 2)da. (10) 
aK 

Let us find the lower bound of the value ET - E0, 

by replacing Px in the integrand of (10) by the 
function I (a, ak), considered as a first approxi­
mation to Px (a). The thermal energies calcu­
lated in this way are shown in Table VII. They 

and the values of the thermal energy have been 
obtained directly from experimental measurements 
of the dynamic and isentropic compressibilities, 
without appealing to any one form or another of the 
equation of state. 

are very close to the true values, since for small 
degrees of compression Pr, Px, and I (a, O"k) 

Assuming the specific heat of the metals to be 
of the form Cv = Cvp + {JT ( Cvp being the spe­
cific heat of the lattice, and {JT the electronic 
specific heat), then by solving the equation 

(11) are close together, while at high compressions the 
major role in (10) is played by the first term, with 
the result that the relative error due to the substi­
tution of the function I (a, O"k) for the true curve 
Px (a) is very small. It should be emphasized 

it is possible to calculate the temperature of the 
shock compression to the same degree of approxi-

TABLE VII 

1.1 1 •) 1.3 11.\ 11.5 I 1.6 L< 1.8 

Aluminum 

ET-£0 , 1010 erg/10.0430.16410.4491,027 2.086 3.817!
1

. 6 33119.6161 
T, 10"d;gK 0.34 0,48 0.78 1 .. 40 2:46 4.18 6,47

1 

9.25 I 
Tfr;;;;;ref.6,10'"K 0.35 0.49 0.82 1.48 2.64 4.41 6.79 9.67! 
1 I 1.1 1.1 11.1 1.1 I 
1 pf f 6 1.44 1.43 1.39 11.3o 1 promre. 1 1 · 

Copper 

E T -£0, 1010erg/g'0.026 0.103 0 .. 315 0.752 1.514 2,88215.0691 
T, 103 deg K 0.36 0.56 1.11 2.20 4.29 7.24 11.97 
Tfromcef.6, 10S"K0.36 0.58 L15 2.30 4.35 7.53 12.42 
1 1.2. 1.2 1 1.2 1: from ref. 6 j 1 1. 55 1. 53 J 1. 54 

Lead 

1.9 2.1 

I I 
I I 

ET-£0 , 1010 erg/g0.0420,0670.1270.265i0,5050,.88t,1

1

. 1.43:d 2.139 3.00513.985 5.138 
T, 103 .degK 0.36 0.55 0.99 1.\12 3.43 5.54 8,23 11.30 14.64 18.05 21.70 
Tfrom ref. 6, 10S"K 0,36 o:5ti 1.04 2.00 3.55 5.73 8.48 11.59 15.()(_! 118.47 22.15 
1P 1.5 1,4 11,3 1.25 1.1v 1.0 0,9 
1P fromref.6 l '1.77 1.69 1,60 1.48 1.35 [1.21 1,07 
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mation.* As can be seen from Table VII, the tem­
peratures calculated in this way differ very little 
from the temperatures obtained in reference 6. 

Replacing Px by I (a, Ok) makes it possible 
also to obtain a lower limit for the values of the 
Grtineisen coefficients, if the pressures on the 
Hugoniot adiabatic and the shock wave tempera­
tures T, found above, are substituted into the 
equation for the dynamic adiabat:6 

Pr = Px + PocrCvp"(p [T- T 0 + E 0 /Cvp] + TPocr~P. (12) 

Equation (12), apart from quantities which have 
already been mentioned, involves the quantities 
f3 = f3oa 112 , {30 being the coefficient of electronic 
specific heat at a = 1, and T 0 and Eo being the 
temperature and internal energy under normal 
conditions. The observed Yp are about 20-25% 
smaller than the values calculated in reference 6 
(see Table VII). 

Finally, let us use the measured sound velocity 
data, and the approximate values of T and Yp 
which have been obtained, to determine the slopes 
of the dynamic adiabats. To this end we write the 
expression for the sound velocity at the Hugoniot 
adiabat: 

(13) 

Differentiating (12) and eliminating dPx/da 
with the aid of (13), we arrive at the relation t 

dPr p0Cf- (Pr I 2o) ["[p (1- ~T I Cvp) + ~T I 2Cvpl (14) 
da= 1-(o-1)('l'p(1-~TICvpl+~TI2Cvpl12. 

An estimate of dPr /da with the aid of the ap­
proximate values of T and Yp by means of (14) 
is considerably more accurate than an estimate 
frem the results of dynamic measurements because 
of the inevitable inaccuracies in recording the co­
ordinates, which are sufficiently trustworthy to fix 
the location of the Hugoniot adiabat in the field of 
the P, a diagram, but not its slope. In deriving 
the equation of state for the high pressure region, 
the original experimental data in references 6 and 
8 are the r~sults of dynamic compressibility meas­
urements, in the form of an equation for the dynamic 

*In these calculations we have used the values given in 
reference 6 for E0 , T 0 , Cvp• and (3. 

tThe derivation of (14) given here is due to Yu. M. 
Shustov; in its general form, the relation between the Griin­
eisen coefficient and the derivatives of the two intersecting 
curves in the field of the P-p diagrams was previously given 
by K. K. Krupnikov. 

n 
adiabatic Pr = L) ak (a - 1 )k. The equation of 

k=t 
state obtained by this method, according to (14), 
can represent the actual slope of the isentropic 
correctly only in case the original analytical ex­
pression for the Hugoniot adiabatic describes the 
true values of the derivatives with sufficient accu­
racy over the entire length of the adiabat. Taking 
this fact into account made it possible to obtain, 
in reference 6, an equation of state suitable for 
calculating the speed of sound. As Table VI shows, 
the discrepancy between the experimental and cal­
culated values of Cr does not exceed 2%. 
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