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The absorption of sound is considered in the low-temperature region, where absorption is 
due to electrons, and for frequencies sufficiently high so that the acoustic wavelength is 
small in comparison with the mean free path. The anisotropy of the Fermi surface is taken 
into account, as are interactions due to the electromagnetic field and to the variation in el­
ectron energy as a result of lattice deformations. The acoustic absorption is determined. 
In the region of wavelengths close to the thickness of the anomalous skiR layer at the acous­
tic frequency, it is shown that a decrease in the ratio of the absorption coefficient to the 
frequency should be observed with increasing frequency. 

1. It is well known that in the low-temperature 
region the absorption of sound in metals is due to 
the electrons. Moreover, although it is reason­
able to discuss the usual picture of absorption as 
due to an electronic viscosity in the region where 
the wavelength 7t: is considerably greater than the 
electron mean free path Z, this is not at all true 
of the opposite case of short waves. 

In what follows we consider precisely the latter 
case. In the limit of sufficiently short waves, the 
mean free path can be considered infinite. There­
fore the processes that occur under such conditions 
are similar to those in a rarefied electron gas. The 
damping of sound waves in this case is analogous in 
nature to the well known damping of plasma waves, 
first discovered by Landau, 1 and is due to the pos­
sibility of the absorption and emission of acoustic 
waves by electrons moving in phase with the waves. 
It is plain, therefore, that the consideration of the 
absorption of sound in the short wavelength region 
( 7t: « l) should lead to corresponding analogous 
considerations in an electron gas. This is exactly 
how the decay of longitudinal sound waves was 
treated in a paper by the author, 2 in which a linear 
dependence of the absorption upon frequency was 
obtained. Pippard3 developed a method which is 
also applicable to the case 7t: « l and gives a de­
scription of the absorption of both longitudinal and 
transverse sound waves. 

The limitations of references 2 and 3 are, first, 
that they refer to electronic models with spherical 
Fermi surfaces and, secondly, that they do not take 
into account the variation of the electron energy 
under the influence of the sound wave.4 The next 
step was therefore to consider a theory of sound 

absorption using a more realistic model. In spite 
of the fact that such attempts have been made, it 
must be admitted that at the present time there is 
not a single theory of sound absorption which is 
consistent and free from the deficiencies of refer-
ences 2 and 3. 

In our view, the reason for this state of affairs 
is that up to now the peculiarities of sound absorp­
tion in the region of indefinitely long free paths 
have not been sufficiently realized. Only in this 
way, for example, is it possible to explain the at­
tempts to calculate sound absorption in this re­
gion with the aid of the heat release formula Q 
= TdS/dt, where S is the entropy of the electrons. 
When the mean free paths of the electrons are in­
finitely long, it is clear that their entropy is con­
served, and therefore if the above formula is used 
correctly in the calculations, nothing can result. 

In what follows we shall put forward a theory 
of sound absorption which, in the first place, does 
not make use of the rate of change of electron en­
tropy or of collision integrals (which are equal 
to zero in our case of infinitely long free paths) 
in determining the absorption; which, in the sec­
ond place, is valid for any arbitrary Fermi sur­
face having a center of symmetry; and which, 
thirdly, takes into account not only the electromag­
netic field arising from the passage of the sound 
wave, but also the variation in electron energy as 
a result of the lattice deformation. Finally, the 
idea of a complex modulus of elasticity tensor will 
be introduced, and in Appendix A the rotation of the 
plane of polarization of sound will be considered 
from this point of view. 

2. Because of the deformation that occurs in a 
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lattice upon the passage of a sound wave, the en­
ergy of the electrons is altered:4 

s (p, r) = s (p) + A;k (p) iJu;jiJxk. (1) 

Here E ( p) is the energy of an electron in the ab­
sence of the deformation, u is the deformation 
vector, and Aik(P) is a tensor depending on the 
quasi-momentum of the electron. Using (1), one 
can write the following kinetic equation for the 
electrons: 

of of { ( -+- 1 ) a2u,. } of ar+var+ e E , c [vxH] - A;k oroxk a-p=O. 
(2) 

Here collisions have been neglected and it has also 
been assumed that, in addition to the Lorentz forces, 
there is a force acting on the electrons due to the 
dependence of the electron energy on the lattice de­
formation. Furthermore, formula (1) yields for the 
velocity v 

- oa (p. r) - oe iJAik OU; (3) 
v = ---ap- ap + ap- oxk . 

In order to determine the electromagnetic field 
we need to know the charge density and current 
density of the electrons. These are found in the 
usual form, with the aid of the solutions of (2) and 
the velocity formula (3): 

Pe=e~dpf, je=e~dpfv. 

We describe the lattice vibrations by the equa­
tion 

•• (0) 02Ui 1 . a \ 
PmUi = }.ikjl OXkOXz + pPE; +--c []l xH]; + axk j A;k f dp. (4) 

Here Pm is the density of the material in the 
lattice, A.ljk.z is th~ modulus of elasticity tenso~. 
and Pl and jz = pzu are the charge density and 
current density of the lattice. The final term on 
the right-hand side of (4) represents the vibration­
electron interaction, which appears in (2). 

It should be mentioned that the consideration of 
the electric field, which in itself leads to an inter­
action between the electrons and the lattice, and 
also the consideration of the interaction due to the 
variation of electron energy in the sound-wave 
field (2), lead to the appearance of an additional 
elasticity. In other words, the interactions under 
consideration lead to a renormalization of the elas­
tic-modulus tensor, and consequently to a renormal­
ization of the speed of sound. Thus, in fact, in Eq. 
(4), A.ljk.z must be interpreted as the renormalized 
elasticity tensor. Note that the appearance of simi­
lar renormalizations in the modulus, even when 
electric interactions alone are considered, is evi-

dent from references 2 and 5, in which no elastic­
ity is taken into account except what results from 
the electrical forces acting between the electrons 
and the ions. In a model that takes into account an 
interaction of the type (1), such as Frohlich's 
model, s-s the occurrence of renormalization in 
the speed of sound is also well known. 

The electromagnetic field is described by Max­
well's equations. For wavelengths large in com­
parison with the radius of the longitudinal screen­
ing field, the equation 

Pe+rz=O. (5) 

can be used in place of the equation div E = 

41!' ( Pe + p z) • Accordingly, if we neglect the dis­
placement current, we obtain from Maxwell's 
system of equations 

l l E 4n: :a c· + . ) cur cur =-&at le lz. (6) 

Equations (2), (4), (5), and (6) constitute a system 
which permits us to describe the sound absorption 
in which we are interested. 

3. The subsequent treatment must be devoted 
to the elimination of all quantities except the lattice­
vibration variables from the above system of equa­
tions. For this purpose Eq. (4) can be written as 

(4') 

where 

t~ ~ ou1 (r', t) 
cr;1 (r, t) = dt' dr ~ii 1m (t - t', r - r') --,---- . (7) 

ox',. 
-00 

The relationship {7) can be considered as a gener­
alization of the usual connection between the stress 
tensor and the strain to the case of dispersion of 
the elastic modulus. In treating the propagation 
and absorption of sound it is convenient to use the 
quantity 

00 

}.ii 1m (w, k) = ~ dr e-ikr ~ dtefc.:.t}_ii 1m (t, r) =}.;lim+ i}.;jlm, 
0 

which we shall call the complex modulus of elas­
ticity tensor. In the problem of sound absorption 

(8) 

in metals, which is treated in this paper, the dis­
persion of the real part 71.' proves to be extremely 
small, and will not be considered. On the other 
hand, the dispersion of the imaginary part A.", both 
in time and in space, is of considerable importance 
[see Eq. (16) ). 

With the aid of (4') it is easy to show that the 
energy lost by,the sound wave per unit time is 
given by 
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(9) represent Eq. (4) in the form (4'). When this is 

According to Onsager's symmetry relations, we 
have also 

kjkm1..ijlm (Ho, W, k) = kikmf..lmij (- H0 , w,- k) (10) 

( H0 - constant magnetic field). 
In what follows we shall determine the complex 

modulus of elasticity tensor within the framework 
of the model outlined in Sec. 2. 

4. We take the decrement of the acoustic damp­
ing to be small compared with the frequency. In 
particular, this will enable us to assume a time de­
pendence of the form exp ( - iwt) in all equations 
except (4). If we then assume that there is no con­
stant field, and take the coordinate dependence to 
be of the form exp ( - ik • r), we obtain with the 
aid of (2) the following expression for the non­
equilibrium addition to the electron distribution 
function: 

of = ~~o (e :; E + Ailktuik ~:) (P k iJejiJp _ w 

- ltO [ k ~ep -w ]) . (11) 

The occurrence of the delta function o+ ( w- kBE/Bp) 
corresponds to adiabatically turning on the interac­
tion an infinite time ago.* 

We have at our disposal a parameter of small­
ness given by the ratio of the speed of sound to the 
electron velocity at the Fermi surface. If we limit 
the expansion in terms of this parameter to the 
most important terms, after substituting (11) into 
(5) and (6), we obtain equations for the transverse 
field El and the longitudinal field E • k/ k: 

_1_ • _ 1 { < v~ ( <Au> No it )) _1_ } Eu. = zewBa13 Ujkt kvo Ajt- <I>- 0"") + Nu13 , 

(12) 

(13) 

Here v0 is the electron velocity, N is the number 
of electrons per unit of volume, < > denotes the 
mean value calculated according to the formula t 
<A> = J dp A Bf0 I BE, and, finally, the tensor 

BaB is of the form 
Bal3 = -rre2 (vcfc.v~o (kv0))- i (c2k2f4rrw) Oaf3· (14) 

The relationships (11), (12), and (13) enable us to 

*In all that follows, 1/k·v will be understood to mean its 
principal value. 

tHere the process of integration is understood to include 
also summation over the zones. 

done, 

kmkt1..;mjl = kmkt{"-~~jt+ (A;mAjt)- <:> ((A;m) 

+ No,m) ((Ajt) +Nojl)}. 

j_ 

kmkt1..;~it = rrw (o (kv0) L1Li)- we2 ( < ~~: L1) 

(15) 

j_ 

+o,aN)Im(iB;;-j)(<~~o Li > + oii3N). (16) 

The summation with respect to a and (3 on the 
right-hand side of (16) is carried out over the 
components that are perpendicular to the direction 
of the wave vector k. In addition we introduce the 
notation 

L· = k (A· - <A;m> - Noim) 
' m tm <1> <1> . 

It follows from (15) that the introduction of the in­
teraction between the sound wave and the electrons 
has led to a renormalization of the elastic modulus. 
Furthermore, owing to the symmetry of equations 
(15) and (16) with respect to the indices i and j, 
the absorption is determined by the expression (16), 
according to formula (9). 

5. We first compare the results achieved so far 
with some already known. 

In the simplest case, where Aij = 0 and A.fjkz 
= 0, taking only the electrical forces into account, 
we have for an isotropic Fermi surface (this cor­
responds to the results of reference 2) 

Here Po and v0 are the momentum and velocity 
of an electron at the Fermi surface, and qt is the 
ratio of the energy lost by the wave per unit time 
to the energy of the wave; the frequency w is given 
by I <'>ilPmW2 - kjkrA.ijlr I = 0, as usual. We also 
note that in the isotropic case, when A. <O> ~ 0 and 
Aij = 0, the renormalization occurs only for the 
hydrostatic -compression modulus. Hence the ve­
locity of transverse sound is not renormalized. 

The case is quite different if the electric field 
is completely neglected, but the changes in energy 
due to lattice deformations are considered. In this 
case we have 

For the case of the Frohlich model, considered 
above, Aij = C<'>ij• and we obtain 
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oA;mizkmkt = - 3k2o1i (C2jp0v0) N, 

ow2 =- 3 (C2/PoV0) (N /pm) k2 , 

q1 = (3rrj2) (C2/PoVo) (N /Pm) (kfvo), 

which corresponds to the results of references 
6-8. 

Let us now consider the frequency dependence 
of the absorbed energy. To this end, we must first 
consider the behavior of the tensor Ba,B· The real 
part of the tensor Ba,B has appeared before, in the 
theory of the anomalous skin effect.9* Its order of 
magnitude is Re B ,...., e2N/p0k. Hence, for acoustic 
wavelengths satisfying the condition 

(17) 

the imaginary part of Ba,B can be completely neg­
lected. It should be mentioned that in the inequality 
(17) 6 represents the depth of the skin layer cor­
responding to the frequency w in the case of the 
anomalous skin-effect. What is important is that 
if condition (17) is fulfilled, both the first term on 
the right hand side of (16) and the second term, 
which depends on the transverse field, are of the 
same order of magnitude, generally speaking. On 
the other hand, in the region of acoustic wavelengths 
small compared with the skin depth, for ordinary 
metals when w/27r > 109 sec-1, the imaginary part 
of the tensor Ba,B turns out to be considerably 
larger than the real part. In this connection, the 
contribution due to the transverse field turns out 
to be relatively small, and the second term in (16) 
can be neglected. 

It can thus be stated that in both the regions 
A » 6 and A « 6 the sound-absorption coefficient 
is proportional to the first power of the frequency. 
However, the ratio qt/w, which is a constant for 
each of these regions, must in general decrease 
noticeably upon changing from a wavelength greater 
than the corresponding skin depth to one which is 
smaller. We note that this picture is nearly the 
same as the one obtained by Pippard in the isotropic 
model for the absorption of transverse sound. The 

*In the region of wavelength which we are considering, the 
inequalities kl » 1 and kv0 » w, characteristic for the anom­
alous skin effect in the radio frequency region, are satisfied. 
In this case the complex dielectric constant of the metal has 
a spatial dispersion; in other words, it depends not only on 
the frequency but also on the wave vector. Under these cir­
cumstances the longitudinal component of the dielectric-con­
stant tensor is negligibly small in comparison with the trans­
verse components, for which the following expression is valid: 

ecxf3 =-(4nijw) ne2 < v~v~o (kv0) >. 

From this it is plain that the real part of the tensor Bat:J is 
none other than the conductivity tensor of the metal, corres­
ponding to the region of anomalous skin effect. 

essential difference is that in our case the absorp­
tion coefficient, generally speaking, does notre­
main constant when A. « 6, as it does in Pippard's 
model. The reason for this is chiefly our allow­
ance for the anisotropy of the Fermi surface. 

APPENDIX A 

ROTATION OF THE PLANE OF POLARIZATION 
OF SOUND 

Consider a non-absorbing medium. Then, from 
(9), 

kjkm).ijlm = kjkmA;mij, 

kjkmA;jlm = kjkmA~mij, kjkm).;j/m = - A;mijkjkrn. 

For an antisymmetric imaginary part, the expres­
sions can be rewritten in terms of the dual vector 
Pmk2G 

We choose the coordinate axes along the principal 
axes of the tensor 

(On the right hand side of this equation, as well as 
in the following one, (4"), there is no summation 
over repeated indices!) Then (4') takes on the form 

(4") 

It is easy to verify that if all three values of wi 
are quite different from each other, then the changes 
in the natural frequencies and, consequently, the ro­
tation of the plane of polarization, will be quadratic 
in G. A different picture emerges if two values of 
Wi coincide. An isotropic medium is a trivial case. 
For oscillations in the plane corresponding to the 
coinciding w , we have w2 = wi ± G 1 k2, where G 1 
is the projection of G on the axis perpendicular to 
the plane of the coinciding principal values. The 
corresponding angle of rotation per unit length is 
equal to ! ( k3 / wf) G 1 . The most obvious reason 
for the occurrence of the gyration is the presence 
of a magnetic field. 10 

Another possible cause of rotation of the plane 
of polarization of the sound is natural optical activ­
ity.* In particular, in optically-active media one 
would expect a considerable rotation of the plane 
of polarization of sound (comparable in order of 
magnitude with the optical rotation), under condi­
tions in which the acoustic wavelength is equal to 
(or smaller than) the wavelength of a light beam 

*Attention has already been called to this possibility by 
V. L. Ginzburg, who has kindly informed me that a study of 
this question has also been undertaken by A. A. Andronov. 
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which undergoes a noticeable rotation of the plane 
of polarization. Such conditions can be realized 
at frequencies w/21r"' 109 to 1010 sec-1• 

APPENDIX B 

INFLUENCE OF LIQUID EFFECTS 

Let us consider what changes would be intro­
duced, by comparison with the results of Sec. 4, 
by taking into account the fact that the electrons 
in a metal form a liquid rather than a gas. For 
this purpose we use Landau's theory of a Fermi 
liquid. 11 Then instead of Eq. {2) we must use a 
kinetic equation of the form 

oof + _j_ (of_ ofo os) + eE ofo _A. 02ui ofo = O. 
at v or oe op 11 oroxz op {2') 

Here oE{p,r)= jdP'<P{p,p')Of{p',r). Wealso 
denote by R {p, p') the operator which enables the 
solution of the equation Of- 0€ of0 /oE =A {p) of0 /oE 
to be expressed in the form 

of= (a{ol as)~ R(p, p') A (p') dp'af0 jas'. 

Because of the fact that <P (p, p') = <P (p', p ), 
there is also an analogous identity for the operator 
just introduced: R(p, p') = R(p', p). 

Continuing the treatment in a manner analogous 
to that in Sec. 4, we obtain, instead of (15) and (16) 

kmkt (f..;.m/1- f..)~jt) = kmkt {<Aim (p) R (p, p') A/I (p'))2 

- <R(p, p'))21 (<A,mR)2 + No,m) (<AnR)2 + Noiz)}, 
(15') 

kmktf..;mjl = m:u <Lf (p) R (p, p') o (kv') R (p', p") Lf (p"))a 

- we2 {<v~R (p, p') Lf (p') ) 2 + o,a N} Im (iB~j) 

X{<~~ R (p, p') Lf (p'))2 + oi!lN}. (16') 

Here we have used the notation 

It follows from formulas (15') and (16') that in 
cases where the electron pair correlation charac­
terized by the function <P ( p, p' ) is not small, the 
influence of the liquid effects cannot be small either. 

In conclusion, I should like to express my grati­
tude to V. L. Ginzburg for discussing the results of 
the present work. 
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