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The effect of the quadrupole interaction on the wave functions of an electron-nucleus system 
is studied. In the case of a nonspherical nucleus the electron and nuclear variables cannot 
be separated. This has the result that there are "satellite" nuclear and electronic angular 
momenta I and j, which satisfy the inequalities I I- I0 I ::o; 2 and I j- j 0 I ::o; 2, where I0 

and j 0 are the total nuclear and electronic angular momenta in the absence of quadrupole 
interaction. The wave function of an electron-nucleus system for a nucleus with axial sym
metry is determined by a perturbation calculation. An explicit expression is given for the 
wave functions in the region r ::o; R ( R is the radius of the nucleus ) . The "satellite" states 
cause the appearance of new matrix elements, which in some cases can greatly change the 
value of the probability of the corresponding transitions. In the case of beta decay, for Z 
"' 70 and Q0 "' 5 •10-24 cm2, with ~I~ 3, where ~I is the difference of the nuclear spins 
of the initial and final states, the new matrix elements can exceed by one to two orders of 
magnitude the values calculated without taking the nuclear-deformation effect into account. 

INTRODUCTION 

ELECTRONIC wave functions (e.w.f.) play an 
important part not only in atomic transitions but 
also in all nuclear processes in which electrons 
take part, such as {3 decay, internal conversion, 
and so on. Since in these latter phenomena the 
electron density in the region of the nucleus is 
important, the probability of such transitions must 
depend to a considerable degree on the finite di
mens ions of the nucleus. The effects of the finite 
size of the nucleus on the e.w.f. have been studied 
in a number of papers, both in connection with {3 

decay ( cf., e.g., references 1, 2) and also with 
internal conversion.3•4 These treatments, however, 
dealt only with the nonsingular charge distribution 
of the nucleus and did not take into account effects 
of the shape of the nucleus on the e.w.f. and on nu
clear transitions. To speak more exactly, in these 
papers it was always assumed that the nucleus is 
spherical. There exists in nature, however, a 
rather extensive class of nonspherical nuclei, for 
which a number of specific properties are ob
served, and special models must be devised to 
explain these properties. 

It can be expected that also the e.w.f., in par
ticular in their behavior near the nucleus, are sensi
tive to the shape of the nucleus, and that there are 

resulting effects on nuclear transitions (the influ
ence of the form of the nucleus on nuclear transi
tions by means of nuclear wave functions was stud
ied in a number of papers devoted to deformed 
nuclei;5- 8 a paper by Smorodinskil 9 predicts an in
crease of the probabilities of forbidden f3 -decay 
transitions owing to effects of the dependence of 
the interaction constant on the shape of the nucleus). 
Indeed, the form of the e.w.f. is determined by the 
interaction of the electron with the nucleus. For 
spherically symmetrical nuclei this interaction 
is characterized by the fact that the total angular 
momenta of the nucleus and the electron are exact 
quantum numbers, in terms of which selection rules 
hold for the nuclear transitions. 

The situation is different in the case of deformed 
nuclei. For example, the existence of an electric 
quadrupole moment destroys the spherical symme
try of the electric field of the nucleus; in this case 
it is already impossible to separate the electronic 
and nuclear variables, and we can no longer speak 
of electronic and nuclear states separately, but 
only of the state of the nucleus-electron system. 
In other words, instead of exactly defined electronic 
and nuclear angular momenta we must consider 
their superposition. This effect can change the 
selection rules, and thus also the probabilities 
of nuclear transitions. Under some circum-
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stances these changes can be large. 
In the present paper we determine, in the frame

work of perturbation theory, the wave functions of 
a system consisting of one electron and a deformed 
axially symmetrical nucleus. We have confined 
ourselves to the first approximation in the defor
mation parameter. We give a formula for the new 
functions which is suitable for the calculation of 
matrix elements for electron capture and {3 decay. 

THE WAVE FUNCTIONS OF THE NUCLEUS
ELECTRON SYSTEM 

The Hamiltonian of a system consisting of one 
electron and a nucleus is 

(1) 

of the nucleus, I is the spin of the nucleus, and K 
and 1-t are its projections on the axis of symmetry 
and the z axis, respectively. The phases of the 
ni K are defined as in reference 11. 

1-t He is the ordinary Dirac Hamiltonian12 

H, = xp + :~m- eAo (r), (5) 

where A0 (r) is the monopole electrostatic poten
tial of the nucleus. The solutions of the equations 

(6) 

in the representation of j2, jz, Ee, and the parity 
( - 1 )l have the form 

0 = (ig11 (r) Y/f.,~, )~ (ir- 1<P}i (r) Y/1\,), (7) 
'fjlj f ( ) or y'z - -Jn-.0-( )or y'z 

Z j[ f f jl'/, f 'Yj[ f f jl 1/, 

where Hn is the Hamiltonian of the nucleus, which 
depends only on the nuclear variables; He is the (we shall always omit the index Ee from wave 
electron Hamiltonian, containing only the electronic functions), where the spinors Y~~l/2 are defined 

variables; and Hen is the interaction term, depend- as in the book of Blatt and Weisskopf. 13 

ing on both the nuclear and the electronic variables. Our problem is that of solving the equation 
In the calculation of the wave functions the elec

trostatic part of the interaction is the most impor
tant. Let us consider deformed axially symmetrical 
nuclei. In first approximation we can confine our
selves to a treatment of the quadrupole term (we 
include the monopole term, the part of the interac
tion independent of the angles, in He) 

(2) 

where Q0 is the intrinsic quadrupole moment of 
the nucleus, a is the fine-structure constant, and 
f ( r ) is a radial function determined by the di stri
bution of the electric charge of the nucleus ( r is 
the distance between the electron and the center of 
mass of the nucleus ) . In the case of a distribution 
uniform throughout the volume of the nucleus f ( r ) 
has the following form: 

f (r) = r 2 I R5 for r <, R. 
,-a for r > R, (3) 

where R is the radius of the corresponding spher
ical nucleus; Ben is the angle between the radius 
vector of the electron and the axis of symmetry of 
the nucleus. 

Since Hen is the Hamiltonian for the interaction 
of the electron with the nucleus as a whole, we shall 
be interested in only that part of Hn that deter
mines the orientation of the nucleus.lO The eigen
functions of Hn will be the symmetrical-top func
tions: 

,1 -- (2/ ' 1) ' . - 2 l'"D'• · (0 ) Jili<K ··· [ -,- I i:L. t<K. n , (4) 

where IJn are the three Euler angles of the axes 

WY = s'f", (8) 

with Hen playing the part of a perturbation. The 
unperturbed wave functions are products of the 
1/JI~-tK and cp 1zjz. Instead of these products it is 

convenient to choose the linear combinations 

(9) 

where F is the total angular momentum, M is its 
projection along the z axis, and C ( .... ) are 
Clebsch-Gordan coefficients. 11 Since Hen is in
variant under rotations, F and M are also exact 
quantum numbers for Eq. (8). Therefore we shall 
look for the solution of Eq. (8) in the form 

In first approximation in Q0 the correction 
function 'll~M satisfies the equation 

(10) 

where e: Io is the rotational energy of the nucleus 
and e:c is the correction to the total energy of the 
unperturbed system. These quantities are con
nected by the relation 

(12) 

Let us expand the function 'll~M in the ortho
normal system 

'\."l C(J'F . ) I yiz 
f.FM!Kjl = LJ f ; (l.lz iJit<K jl 1f,· (13) 

IJ.-7-iz=M 

Then 
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(~ ir-J<t>~t (r) hMIKit ) 
fjl 

'F~M .. 
~ r- 1<t>f;, (r) (crr / r) "IFM!Kit ' 
I jl 

(14) 

where the expansion coefficients <»fjz ( r) are radial 
"electronic" correction functions. To determine 
them, we substitute Eqs. (14) and (9) in Eq. (11). 
Using the properties of the functions XFMIK"Z• 
after some simple calculations we get the foflow
ing equation for <»fjz: 
[djdr±r- 1x;L]<P/'!L+ (s ± m+eA0 (r)J<l>J7t 

= ± (~;)lu)ljj,ou, + Aljt; 1,;,t,f (r)] <t>1,i,; 

here 

(15) 

Aljt;J,;,t, = -i-Q0a(-I/"H-F[(2/0 +I) (2j0 -!- I) (2!0 -i I) 

>~(2j ~~ I)J'1•c(2/0 /; OK)C(2l0l; 00) 

XW (//0 jj0 ; 2F) W (2lj0 1/z; l0 j); (16) 

- (/ + I) for j = l + 1/ 2 , 
"il = l (17) 

for j = l- 1/ 2 : 

E = Ee + '2J, - Et; (18) 

The W' s are the well known Racah coefficients 
(cf., e.g., reference 11). From the properties of 
the Clebsch-Gordan and Racah coefficients in Eq. 
(16) it follows that the "satellite" angular momenta 
I, j, l are connected with the basic angular mo
menta by the relations 

From the equations (15) one can calculate both 
the energy correction Ec caused by the quadrupole 
moment and the corrections <»ljz ( r) to the wave 
functions. The calculation of Ec essentially means 
the determination of the hyperfine splitting of the 
atomic levels. We shall not concern ourselves 
with this problem, which has been sufficiently 
thoroughly studied. Moreover, we shall not go into 
the calculation of the wave-function corrections 
<»[0j 0z0 ( r) that correspond to the basic angular 
momenta I0, j 0, Z0, since they do not give new 
matrix elements. Accordingly, the quantity Ec 
will always be omitted hereafter. 

The relations (15) are a system of inhomogene
ous equations which are to be solved with the fol
lowing boundary conditions:14 

lim¢±= 0, Jim cf>± ,:- oc. (20) 
r-+O r-->00 

<f>± = i 
q,+q,-_q,-q,+ 

1 2 l 2 

r 

[<l>f ~ (.A-<t>;-
00 

r 

-f-cA+<t>i) dr- <t>:f ~(.A-<t>;:- + .;t+<t>t)dr], (21) 

.A± = Aljt;1,;,t.f (r) <1>~,=1,; (22) 

<Pf and <»t are the two linearly independent solu
tions of the homogeneous equation 

(djdr ± r- 1x;1) ¢± + ( 8 ± m + eA 0 (r)) ¢'1= = 0, (23) 

which satisfy the following boundary conditions: 

lim <t>f' = 0, lim <t>t =f= :x: (for ([~I< m); (24) 
r-->0 r->oo 

(for lei > m). (25) 
r-..oo 

Here p = (€2 - m 2 ) 112 and o is a radial function 
whose form depends on A0 ( r ) . 

To get a concrete solution, we must know the 
spherically symmetrical potential A0 ( r ) , which 
determines the form of the functions <»[ and 'Pf, 
and the unperturbed functions <» 0±. In the choice 
of A0( r) the finite dimensions of the spherical 
nucleus should be taken into account. For sim
plicity we shall omit this refinement, however; 
this is quite permissible in determining the order 
of magnitude of the effect for {3 -decay transitions. 

Thus we take A0 to be the Coulomb potential 
of a point nucleus: 

eA0 (r) = Za I r. (26) 

The corresponding functions <»[ and 'Pf are 

<t>f= = V 1 ± s I m p-'1• [(x + No) MN-'f,,y + (T +:N) MN+'J,,y), 

<t>:f = V1 ± slmp-'l•[(x+ N0} WN-•J,,y± WN+•;,,y], (27) 

p = 2Ar, A= V mz-;z (for I el < m); 

<t>t = F(r) + F (-r). A= i Ve-2 -m2 

where 

(for I~ I > m), 

(28) 

N = Zas1V m2 - 62, N 0 = Zaml V m2 - €2, 

T = Vx2 - Z2a 2 , a+= Vel m + l, 
a_= iV£Jm- I, (29) 

F (r) = e'"Yf (r- iv) r (- 2r) <t>f= (I e 1 > m), (30) 

For I € I > m we must also impose the radiation and M ( p) and W ( p) are the well known solu-
condition. 14•15 The solution that satisfies the bound- tions of the Whittaker equation. 16 

ary conditions is of the form As for the functions <» 0±, they are solutions of 
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the unperturbed equation. Here we must distinguish 
bound states ( Ee < m) from unbound states ( Ee 
> m). In the former case the w0± are the well 
known electronic functions of the hydrogenlike atom, 
and in the latter case they are continuous-spectrum 
Coulomb functions. 12 The w0± are normalized, and 
here in the determination of the normalization con
stants we can also take screening into account, as 
is usually done in the derivation of formulas for (3 
decay. 

APPLICATION TO BETA DECAY 

Let us now return to the solutions (21). In the 
general case w[ 2 and w0± have simple forms 
only at very sma'n or very large values of the ar
gument. For (3 decay, however, we are interested 
in the behavior of the electronic functions only for 
r < R. We note that p, the argument of the func
tions wf.2, defined in Eq. (27), has a parametric 
dependence on the relation between € and m, 
whereas the argument of w0± depends on E0/m. 
For strongly deformed nuclei the difference Eio 
- q with I I- I0 I ::::: 2 ordinarily does not exceed 
2m ( 1 Mev ) . As for the electron's energy Ee, in 
(3 decay it is limited by the energy of the transi
tion. If we consider (3 -decay transitions with en
ergies not exceeding 1 Mev (which is always the 
case for transitions between rotational levels ) , 
then €::::: 5m (2.5 Mev). From the relation p = 
2A.r for R "' 6 x 10 -ta em (rare earths ) and € 
= 5m we have p (r = R) Rl t;6• The smaller €, the 
smaller the error in expanding cf?± in powers of 
p. There is another simplifying circumstance for 
p (r = R) ::::: 1; this is that the integral 

r 

~ (.A~<I>2 + .A+<I>t) dr 
00 

in Eq. (21) is determined by the behavior of the 
integrand for small p. 

In what follows we confine ourselves to the first 
term of the expansion in powers of p. Then the 
quantities w0± have the same form both for the 
discrete spectrum Ee < m (capture) and for the 
continuous spectrum Ee > m ((3 decay): 

cpo'± ;::;:::: C± (s,) rY•, (31) 
r-..o 

where 'Yo is the value of y for the unperturbed 
state j0, Z0• Owing to this the functions cf?± will 
also be the same in this approximation for the 
bound and free states. As the result of calculation 
we get for r ::::; R: 

-+: _ A/jl;!,j,l, ,-~+ '(-'- )y-y, 5Zrt [1 + (K -j) / (Ko -jo)) 
CI>1Jz(r) - Ra ct>J,l, (r)) R 21 (jo + 3 -r)(r + 2 -ro) 

(32) 

_ _ Al}l;J,j,l, ~+ {( !__)y-y, 5 [K + j + Z 2a2 { (xo -jo)) 
ct>l}l(r)- Ra ct>J,t,(r) \R 2j(jo+3-r)(r+2-jo) 

(33) 

It can be seen from Eqs. (32) and (33) that the cor
rection functions depend only on Ee (but not on €), 
through the unperturbed functions. This fact is es
sential in applications. The proportionality between 
w± and w0± also has another consequence; namely, 
since in the region of the nucleus the w0± have ap
preciable values only for small angular momenta of 
the electron, in practice the only important correc
tions will be those to states with small j0, l0• 

It is easy to see that for (3 decay inclusion of 
the new "satellite" states can change the order of 
magnitude of the probabilities of forbidden transi
tions. In fact, for a given type of (3 interaction the 
value of the matrix element is determined by the 
difference ~I of the nuclear spins of the initial and 
final states, and in the case of electron capture also 
by the electronic states j0, l'0• The correction func
tions (14) contain new nuclear and electronic states, 
which leads to an effective decrease of the order of 
forbiddenness. The quantitative calculation of this 
effect of course depends on the type of interaction. 
It will "be presented in another paper, in which we 
shall also examine the influence of the "satellite" 
states on the shape of the (3 -ray spectrum, and in 
which the results of calculations will be compared 
with the experimental data. We here mention only 
that at energies up to 1 Mev and with ~I :::: 3, for 
z "' 70 and Q0 "' 5 x 10-24 cm2 (both for (3 decay 
and for capture) the transition probabilities can 
be increased by several orders of magnitude. More
over, the matrix elements of transitions with ~I 
= 3, 4, 5 are of the same order of magnitude, which 
is not so in the case of spherical nuclei. Similar 
results can also be expected in the case of internal 
conversion. 

V. Rittenberg took part in the initial stages of 
this work, and we express our sincere gratitude 
to him. We regard it as our pleasant duty to give 
our thanks also to Academician S. Titejca and to 
A. Gelberg for helpful discussions. 

Note added in proof (February 13, 1960). It has 
recently become known to us [private communica
tion from J. M. Pearson; see also Bull. Am. Phys. 
Soc. 4, No.4, 229 (1959) ]that Pearson is now study
ing the influence of the nuclear quadrupole moment 
on the relative intensities of first-forbidden (3 tran
sitions for Np236 . For this purpose the appropriate 
Dirac equations are being solved numerically. 
Pearson's preliminary results are negative (cor
rections "' 4 percent), which agrees with the con
elusion of the present paper. 
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