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The possibility of determining the scattering amplitudes of unstable particles by analyzing 
the energy and angular distributions of reactions in which they are produced is considered. 
Reactions are discussed involving the formation of two particles ( 11" + N- A + K, ~ + K) 
and three particles ( N + N - N + A + K), two of which interact by resonance at low energy. 

1. INTRODUCTION 

OF the elementary particles known at the present 
time, the majority are unstable. This circumstance 
greatly complicates the study of their interaction, 
inasmuch as it is impossible to carry out direct 
experiments on the scattering of unstable particles 
by each other. Therefore, it is· important to find 
indirect means for the measurement of quantities 
characterizing the interaction of unstable particles. 

In the recent papers of Chew,! Chew and Low,2 

and Pomeranchuk and Okun'3 the possibility was 
considered of measuring the scattering amplitudes 
of unstable particles by each other by means of an 
analytic continuation of the cross sections of proc­
esses taking place with stable particles or by 
measurement of the phases of the scattering c,or­
responding to large orbital momentum. This mode 
of measurement is extremely attractive inasmuch 
as it can give information on the interaction of un­
stable particles over a wide range of energies and 
transferred momenta. However, practical appli­
cation of this method is at present complicated be­
cause of the non -uniqueness of the analytic continu­
ation of cross sections and the difficulties of meas­
urement of phases with large momenta. 

Another method of measurement of quantities 
characterizing the interaction of unstable particles 
is based on a study of reactions with production of 
these particles close to threshold or at the limit of 
the spectrum.4- 6 This method is more limited by 
reason of the fact that it affords a possibility of 
determining the scattering amplitudes of unstable 
particles only for zero energy of their relative 
motion. However, it is entirely unambiguous and 
much simpler than the method of Chew et al. Up 
to recent times, this method has been used only 
in the case of reactions with production of three 

particles, two of which interact by resonance at 
low energy (Migdal and Watson4 ). 

In references 5 and 6, reactions were consid­
ered with the production of three particles of low 
energy which interact in nonresonant fashion. 
For the determination of the scattering amplitudes 
of the generated particles in certain reactions, for 
example, 71"- + p- n + 11"+ + 11"-, n + 7r0 + 71"0, p + 11"-

+ 71"0, it was shown to be sufficient to measure their 
energy distribution, and in the others ( K+- 271"0 

+ 11"-, 271"0 + 11"+ ) it was necessary to measure the 
correlation between directions of their emission. 

The possibility of determining amplitudes in 
these cases is brought about for different physical 
reasons, as will be made clear in what follows. 

In the first case, the possibility of determining 
the amplitudes is based on the fact that if we con­
sider the matrix element of a reaction (taking 
place in a certain volume of radius r 0 ) as a func­
tion of the momenta of the produced particle Pi. 
then the terms linear in Piro are completely de­
termined by the amplitudes of pair scattering. In 
turn this is explained by the fact that the wave func­
tion of the three particles at Pi ~ 0, in the region 
of distances of the order of r 0 between particles, 
differs from the function for zero energy (Pi = 0 ) , 
with accuracy up to terms linear in Pir0, only by 
a factor that is determined by the behavior of the 
wave function at large distances between the par­
ticles. 

However, in a number of cases (for example in 
the reactions K+- 271"+ + 11"-, 271"0 + 11"+ ) in squaring 
the matrix element terms linear in Piro drop out 
from the expression for the cross section. In 
these cases, measurement of the energy distribu­
tion does not allow us to determine the amplitudes 
of pair scattering. None the less, as was shown in 
detail in reference 5, thanks to the effect of the 
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centrifugal barrier, correlations between the di­
rections of flight of the particles are fundamentally 
determined by pair interactions. 

In the present work, the possibilities are dis­
cussed (Sec. 2) of the determination of scattering 
amplitudes of unstable particles (A, K; ~. K) 
from a study of reactions with the formation of 
two particles ( 1r + N - A + K, 1r + N - ~ + K). 
The basic idea used in the study of reactions with 
the formation of three particles also becomes 
clear from this section. 

In Sees. 3 and4 we study in detail reactions with 
formation of three particles (of the type N + N 
- N + A + K) under the assumption that the inter­
action of two of the particles ( N, A) has a reso­
nance character for low energies. 

In contrast to Migdal, 4 we consider not only the 
resonance interaction but also the interaction of a 
third particle (for example, K) with two resonant 
interacting particles (N, A). Account of these in­
teractions leads to corrections to the energy dis­
tribution of the produced particles [see, for ex­
ample, Eq. (52)]. These corrections are of the 
order Piro and are expressed only by amplitudes 
of pair interactions and the effective radius of the 
resonant interaction. 

Study of the energy distribution of the particles 
produced allows us in this case to measure the 
scattering amplitudes of all three formed particles 
on each other and also the effective radius of reso­
nance interaction. 

2. REACTIONS WITH FORMATION OF TWO 
LOW-ENERGY PARTICLES 

Let us consider a reaction of the type 

A+B___,.A'+B', 

where rnA + mB < rnA' + fiB' ( m = mass of the 
corresponding particle). The matrix element of 
such a reaction 

(1) 

M = ('Y~> (A', B') i 'F~+> (A, B)), (2) 

depends on the energy E in the center of mass sys­
tem (c.m.s.) as an explicit function of the initial 
and also the final state. 

However, as was noted in reference 6, one can 
show that the matrix element 

<'¥t> (A', B') I '¥~+->(A, B)), 

where E0, the threshold energy of the reaction (1), 
is an analytic function of E near E = E0, with the 
exception of special cases. It can therefdre, with 
accuracy up to terms of order kr0, be replaced 
bt the matrix element M0 = <wt~ (A', B') I 
wi~ (A, B)>, where r 0 is the effective interac-

tion radius, k2 = 2J1. ( E - E0 ) and J1. is the reduced 
mass of the particles A' and B'. Therefore, ac­
curate to terms linear in kr0, the dependence of 
the matrix element M on the energy is determined 
as a function of the final state. This dependence is 
usually easily found because of the fact that the 
Schrodinger equation for the function wt;> (A', B') 
contains only ~ and, consequently, the depend­
ence on k appears only as a result of the bound­
ary condition at infinity. Since only the S -state 
gives a contribution to (2) at low energy, then (for 
distances between particles r » r 0 ), 

nr(-) (A' B') = -i8 sin (kr + o) 
IE , e kr , 

o is the phase of S -scattering of the particles A' 
and B'. For r 0 « r « 1/k, 

'¥~l(A',B')=e-i8 si~r'O [1 +kcoto+O (k2r2)] 

(3) 

where a= o/k lk=n is the scattering amplitude, 
whence it follows that, with accuracy up to terms 
of order kro, the function wk"> differs from the 
function wk"~ by the factor 

f=e-iB 5~:" H M=('F~-l(A',B')j'¥~~l(A,B)) 

_ p• (nr(-) i '¥(+)) 
- I£o I Eo • (4) 

However, if a "" r 0 (nonresonant case), then 
we may expand e-io sin o in a series with the ac­
curacy considered thus far. Then F = 1 - ika and, 
consequently, the cross section of reaction (1) is 

:; (A + B ___,.A' + B') = k ( 1 + 2k Im a) I M0 j2 • (5) 

Thus, by measuring the cross section of the re­
action (1), one can determine Im a = ( k/ 47r) a'; 
a' is the total interaction cross section of particles 
A' and B', which, because of the possibility of the 
reaction A' + B' -A+ B, is proportional to 1/k. 
If other channels than A' + B' -A+ B are pos­
sible in the interaction of A' and B', then a' is 
not expressed directly in terms of u. 

Evidently the most interesting reactions of this 
type are 

rt- + p-~A0 + K0 , 

rr+ + p->P + K+. 

Since the reactions 
· A 0 + K 0 --~' N + rt, N + 2rt, 

(6) 

(6') 

N + 3n, N + 4rr, (7) 
are possible at zer.o energies of A0 and K0, then 
a' is not expressed directly in terms of u. Fur­
thermore, from the unitarity property of the S­
matrix, considering that the contribution of the 
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last two reactions of (7) is small because of the 
smallness of the phase volume, we find that 
Ima = (k/4-::) {:(Ao, f\ 0 -+N, -::) 

(8) 

Thus, by measuring the dependence of the cross 
section of reaction (5) on energy, we measure the 
cross section of the reaction A0 + K0 - N + 1r + 1r 

at low energy of A0 and ~. 
The reaction (6') can be considered in an analo­

gous manner. One deficiency of this method is that 
only the imaginary part of the scattering amplitude 
is determined. As will be seen below, the real part 
of a can be determined from a study of the reac­
tions 

p + p-+ A o + K' + p, p + p -+ ::;+ + K+ + n, 

P + P _, :.:.o -1- !c + P. (9) 

Other interesting possibilities of measurement 
of scattering amplitudes of unstable particles are 
uncovered if several channels with neighboring 
thresholds are possible in a reaction of type (1). 
As an example, let us consider a reaction with the 
formation of 1: and K particles: 

:-:-+p-+L-+K+, 

;-c- , p -+ r,o + Ko. 

(lOa) 

(lOb) 

In this case it is immediately advantageous to 
make· use of isotopic invariance. The state ( 1r-, p ) 
is the superposition of states with isotopic spip T 
= % and T = %. For matrix elements with the 
definite isotopic spins M112 and M3; 2, one can 
write down relations that are analogous to (4): 

M,1, = ( 1 + ika~1,) M?1,, 1\<1.12 = (I + ika:1,) M?:, (11) 

al/2 and a3;2 are the scattering amplitudes of 1: 
and K in the states with isotopic spin % and %. 

From this it is easy to obtain the following ex­
pression for the cross section of the reactions 
(lOa) and (lOb): 

::r _ + = ~ k I M?1,!2 ( 1 + 2 V2 x cos 9 + 2x2 ) 

r (a:1 + y2a~, i'~>J (1 + "Jf2xe-i"'l J 
X I I - 2k Im ' ': - , 

L 1 + 2 V 2x cos <;> + 2x2 
(12) 

(13) 

where x, ifJ are the modulus and phase relation 
of the matrix elements M~;2 /M~12 . The values of 
x and cp can be determined, for example, from 
the ratio of the cross section of reactions (lOa) 
and (lOb) to the cross section of the reaction (6') 
(in which the same M3; 2 and a3; 2 enter). Then, 

by measuring the energy dependence of the cross 
section one can, by means of (12) and (13), find 
two relations between a1; 2 and a312 . Inasmuch 
as 1m a3; 2 is determined independently from the 
cross section of the reaction (6'), then three un­
known quantities enter into these two relations. 
For a unique determination of all the quantities, 
it is necessary to study simultaneously reactions 
with the production of three particles. 

3. REACTIONS WITH THE FORMATION OF 
THREE LOW-ENERGY PARTICLES, TWO 
OF WHICH UNDERGO RESONANCE INTER­
ACTION 

a) Nonresonant interaction 

To establish the energy distribution in a reac­
tion of the type 

A _:__ B-+ A'_:__ B' _:__ C' 
' • I ' 

(14) 

at energies close to threshold, one can proceed in 
a fashion similar to what was done for binary reac­
tions. The wave function -.Jt~> of the S -state of 
the three particles, A', B', C' in the center-of­
mass system (in what follows we shall enumerate 
these with the indices 1, 2, 3) has the form 
ne(-) ( ) ..n ( ) , a12 ( 'k ) sin PaPa IE r1. r 2 , r 3 = ,.., rb r 2 , r 3 --, - exp - l 12p1Z --

Pt• PaPa 

, Uta ( 'k ) sin P2P2 , Goa ( 'k ) sin PtPl --, Pr;- exp - l IcPn P2P2 -t- P;a exp - l 2aPca --p;p;----
(15) 

at large distances between all particles. The spin 
variables are omitted everywhere in what follows 
for simplicity; Pik is the distance between par­
ticles "i" a..'ld "k", Pl is the distance from the 
particle l to the center of mass of the two other 
particles, 

Pi are the momenta of the particles in the c.m.s., 
ail are the amplitudes of scattering of pairs of 
particles at zero energy, mz are the masses of 
the particles, and ~ (r1, r 2, r 3 ) is the wave func­
tion of three free particles with a total orbital mo­
mentum equal to zero and with a fixed energy for 
each particle. The function ~ (r1, r 2 , r 3 ) is the 
mean value of the function 

exp (ip,r1 + ip2rz + ip3r 3) = exp (ikd:ltz -+- ip~fia) = ... 
(15b) 

over all orientations of the plane in which the vec­
tors Pt• P2 and p3 lie. If the state of the three 
particles is to be characterized not by the mo­
menta Pt> p2 and p3, but by their magnitudes p1, 

p2, P3• and the Euler angles ei of the coordinate 
system that has two axes in the plane of these 
vectors, then 
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= s~z ~ exp (ip1r1 + ip2r 2 -+ ip3r3) dOt. (16) 

Equation (16) is almost self-evident, and can easily 
be obtained from equations which will be presented 
below. We note only that it is valid under the con­
ditions 

(17) 

We assume as in the case of two particles that the 
distances Pil are such that 

1 I ku > Ptz >au, r0 • (18) 

Then, expanding in a series and limiting ourselves 
to terms that are linear in a/ p, ka, we obtain 

'ft">"" 1 + a12 I P12 +ala I P1a + a23 I P2a- ik12a12 

- ik13a13 - ik2aa20 = ( 1 - ik12a12- ik13a13 - ik23a 23) 

(19) 

in place of (15). Inasmuch as terms linear in kr0 

cannot appear from the interaction at small dis­
tances, as has already been noted, then even at 
small distances between the particles, the function 
~> differs from the function >¥~> only in the fac­
tor 1 - ik12a 12 - ik13a 13 - ik23a 23 • Ttis result was 
used in references 5 and 6. 

However, as is well known, in the interaction 
of nucleons, the scattering amplitude at zero en­
ergy a » r 0 and the condition ka « 1 are ob­
served only in a very narrow range of energies. 
Therefore it is necessary to obtain a result which 
is free from the restriction ka « 1 (the restric­
tion kr0 « 1, naturally, remains). 

In the case in which all the amplitudes ail » r 0, 

the problem becomes very complicated7 and there­
fore we shall limit ourselves to the case in which 
only a single amplitude a 12 » r 0, while the ampli­
tudes a 13, a 23 "' r 0• This case takes place for re­
actions of the type N + N - N + N + 1r, and in the 
reactions 

N + N _,. N +A+ K, N + N......,. N +I:+ K, (20) 

if we assume that all the baryons interact in reso­
nant fashion at low energies. Since the simple for­
mula (15) is no longer useful in this case_, more 
detailed analysis of the wave function of the three­
particle system is necessary to obtain results. 

b) The System of Equations for the Wave 
Function of Three Particles 

For the investigation of the wave function of 
three particles, it is convenient to introduce the 
Jacobi coordinates Pt2, P3• or P13• P2• or P23• P1· 
In the variables p12 and p3, the Schrodinger 
equation has the form 

+ V23(P2a)+Vl23l+ 'F£= E'FE, (21) 

1 I !L12 = 1 I m1 + 1 / m2 , 1/11.3 = 1/m3 +· 1/ (m1 + m2). 

We note that the assumption as to the existence of 
interaction potentials is introduced only for sim­
plicity and final results are not dependent on it. 

In order to take the asymptotic conditions into 
account explicitly (since we are interested in func­
tions of the final state, 'liE at infinity must have 
the form of an incident plus an outgoing wave), it 
is convenient to write down the equation in inte­
gral form: 

'I' E (PI2• Pa)=<D (PJ2• P3) 

- ~G (PI2- P~2' Ps-P~) V12 (p~2) 'FE (p~2• :;;)d3p;2d3p~ 

- ~ G (p13- p;3, P2- p~) Vl3 (?;a) 'FE (p; 3, p~) d3p;3 d3;.; 

- (1-> 2) - ~ G (pl2- P;2, Pa-p;) Vl23 (p;2, p;) 

cJ>( Pt2• P3) is a function defined by (16), 

G(p12. P3) = G(Pla• P2) = G(p23• P1) 

_ \ d3pd3k exp {i (PP3 + kpa)} 
- j (2n)6 p2 I 2p.a + k2 I :::P-12- E + i€' 

(22) 

(23) 

The following expressions will also be convenient: 

(24) 

H~2 > are the Hankel functions. All the quadratic 
roots of the type kp entering into what follows 
are determined for p2 I 2J.L3 > E as - i-./ p2 I 2J.L3 - E . 

In the matrix element of production of three par­
ticles in which we are interested, the wave function 
'liE enters in the region p12 "' p3 "' r 0• We want to 
prove that in this region, with accuracy up to terms 
linea11 in Kr0, 'liE differs from >¥0 only by an en­
ergy qependent factor; we want to find an expres­
sion for this factor in terms of the amplitude of 
the pair interaction ( E0 = 0). 

In order to accomplish this, it suffices to show 
that 'liE differs from >¥0 by a factor in region 

(25) 

In this region one can always neglect the contribu­
tion of the three particle interaction [the last term 
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in (22)]. Actually, by making use of the explicit ex­
pression of the Green's function (24), we obtain the 
result that the last term is equal to 

-i(f!l2f!s)'/, • ' ' • ' ' ' ' 
(--2 -+-~~)2 \ vl23 (?12• ?a) 'f (?12• ?a) dapl2 d3p3 
I12P12 lsP3 .) 

if V t23r~ ( J.!tzJ.t3) t/2 ""' 1. If the interactions of par­
ticles 1, 3; 2, 3 and 1, 2, 3 are nonresonant,. then 
'IF (ro, ro)""' at2/ro. Consequently, it is of the order 
a12rV ( 'Yt2PI2 + 'Y3P; )2, which, as will be seen, is 
much smaller than the contribution from the two 
particle interactions. Omitting this term, we con­
sider in more detail the remaining terms in Eq. 
(22). In this case, it is easy to make note of the 
following important circumstance: if the variables 
on the left hand side are changed in the region (25) 
or even simply in the region p~2 + p~ » r~, then 
the function appears in one of the three regions 
Pt2 ""' ro, P3 » ro; Pt3 ""' ro, P2 » ro; P23 ""' ro, 
Pt » ro, on the right hand side under the integral. 
Therefore, if we were to know >¥ in all these re­
gions, then we would find >¥ in the region p~2 + p~ 
» r~ and, consequently, in the region (25). 

We shall show that in each of these regions, 
respectively, the function "IJIE has the form 
<Pt2 <Pt2) 'IT3 (p3), <Pt3 <Pt3) 'IT2 (p2), <P23 (P23) '~Tt(pt) 
with accuracy up to terms linear in Kr0, where 
<Pil is the wave function of the particles "i" and 
"l" at ze:r:o energy, while the functions '~Fi (Pi ) 
satisfy some set of equations in which as unknown 
parameters there appear only the amplitudes of 
pair interactions. For solution of these equations 
it is shown that if Pi« 1/K, then all the functions 
'l'i (Pi) differ from their values for E = 0 by one 
and the same factor. The latter also leads to the 
result that the entire function 'IF ( Pt2, p3) differs 
from its value at E = 0 by the same factor. Si­
multaneously, the functions '~Fi (Pi) are found; 
these can be used in a number of other problems. 

In order to prove these assertions, we consider 
as an example the region Pt2 ""' r 0, p3 » r 0• 

In this region we want to expand the right hand 
side of (22) in powers of Kro and r 0 I p3. For this 
purpose, it is convenient to represent the function 
G <Pt2- Pb P3- Pa) in the form 

(26) 

We can now carry out the indicated expapsion in 
all terms except that containing 6 ( p3 - Pa) . In 
first approximation, we obtain ( Pt2 ""' r 0, p3 » r 0 ): 

(27) 

d3 ' a ' \' ( flta ') ' ' ' , , X P12 d P&.- J G P3•- m1 @3- ?2 V 13 (Pia)'¥ (?13• ?2)d3(lla d3p~ 

- ~ ti (ra, - ~:: ?a -p~) V2a (P~a) '¥ (p~3 , p~) d3p~& dzp~, 
where (28) 

G ( - ') - . \ d"p ip(p,-p;> ,;· 2 
12 "" ?a - - t ~ <2nJ" e r 2p.12 (£ - p 1 2p.:,) 

and the relations among Pt3, p2, p23, Pt and Pt2, 
P3• and the smallness of Pt2 are taken into account 
in the latter terms of (28). But it follows immedi­
ately from (2 7) that 'IF ( Pt2, p3) = cp t2 ( Pt2 ) 'IT3 ( p3) 
for Pt2 ""' ro, P3 » ro, where cp t2 ( Pt2) satisfies 
the equation 

( ) I tJ-12 \' V 12 (p~2) , , 

ffl12 Pl2 = - z;- J I . I ffll2 (pl2) d3pl2, 
P12- r->12 

(29) 

i.e., it is the wave function of particles 1 and 2 for 
zero energy. 

Repeating'these discussions for two other re­
gions, we obtain 

'¥ (?13• ?2) = ffl1a (Pia)'¥ 2 (p2) for P1a ~ ro, P2 ~ ro, 

'Y(?za. ?I)=cp2a(P23)'¥I(pl) for P23~ro, P1~ro (30) 

with the expressions for 'ITt ( pt) and 'IT2 ( p2) ob­
tained from (28) by substitution of indices. 

However, if we now take it into account that 
the wave function enters the right hand side of (28) 
in precisely the regions under consideration, then 
we can substitute (29) and (30) in (28). In this case 
we obtain the following relation among the functions 
'IF 1, 'IT2, and 'IT3: 

W ( ) sinpapa \a ( ')n' ' ' 3 Pa = p;;p;;- + a12 ~ 12 ?a - ?a I a (pa) d3p3 

flu(' , , , 
ail =-~ j Vu (pu) ffla (pil) d 3pu, (31a) 

where ail is the scattering amplitude of the par­
ticles "i" and "l" at zero energy. 

Substituting (29) - (30) in the expressions for 
'IT2 (p2) and 'ITt (pt) (which we have not written 
out), we obtain 

'¥ ( ) _ sin P2P2 1 G , , d3 , 
z P2 - -;;;_p;:- + al3 J 13 (p2- ?2) '¥2 (p2) P2 

(31b) 
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(31c) 

Equations (31a), (31b), and (31c) represent a 
system of three integral equations with functions 
'~'i (p ), '~'2 (p ), and '113 (p ). This system of equa­
tions is identical with the system of equations ob­
tained by Skornyakov and Ter-Martirosyan7 with 
the help of boundary conditions for the wave func­
tions in the case in which all three interactions 
have a resonance character. As is seen from the 
foregoing, these equations follow naturally from 
the initial Schrodinger equation without any as­
sumptions on the resonance of all interactions. 
In order to estimate the order of magnitude of 
the individual terms in each of these equations, 
and also the order of magnitude of the terms neg­
lected in their derivation, we consider their solu­
tion by the method of successive approximations. 
For this purpose, we substitute, on the right hand 
side of (31a) for example, 

'l'•(O) _ sin p1p1 'I"(O) _ sin P2P2 'I"~o) = ~n PaPs • (32) 
1 - P1P1 ' 2 - P2P2 ' PsPa 

By making use of (24), we obtain 
'¥ ( ) _ sin PaPs (I 'k ) ~ a,s ikuP• sin (pzp3p.,3 I m,) 

3 Ps - ---,o;;p;;-- - l l.Ul2 I Ps e P2PaP.13I m, 

1 a2a eik,.p, sin (PtPsf'-23 I m.) 
1 P3 P1PsP.23 i m2 ' 

(33) 

from which it follows that if all the interactions 
are nonresonant (ail"' r 0 ), then the correction 
terms "' Kr0, r 0 I p3 « 1 and the application of 
successive approximations is valid. The neg­
lected terms in this case are of the order ( Kr 0 ) 2, 
r 0Kr0 lp3, rVp~. 

If r 0 « p3 « 1IK, then 

'¥3 (p3)= ( 1- ik1.U12- ik,.a,a- ikzaa23)( I + a,a I Pa + a2s IPs) 

(34) 

in agreement with (20). 
When all three interactions are resonant (ail 

» r 0, Kail....., 1 ), none of the correction terms is 
small, and it is necessary to find a method of ex­
act solution of Eqs. (31). The neglected terms in 
this case are of the order of Kr0 and r 0 I p3• 

In our present work, we are interested in the 
case in which only one of the interactions has a 
resonance character (ai2 » r 0, a13"' a23 "' ro)· 
In this case, we can neglect the last two terms in 
Eq. (31a) in the zeroth approximation. This equa­
tion is then easily solved. If we set i!J0> 
= A (sin PaPa )/p3p3, then it follows from Eq. (31a) 
that 

(35a) 

To find '1!2 ( p2 ), "IJ!i (Pi) in this same approxima­
tion, it suffices to substitute '1!!0> ( Pa) in the third 
term on the right in (31b) and (31c), and to neglect 
the second and fourth terms. We then have 

'I"(O) ( ) _ sin p,p, ...J-. a12 e-ilr,p, sin (P.t2PsPtl m2l (35b) 
1 Pl - ----p;p;- · 1 +ikua12 --p,- P.12PsP1 I mz 

and, similarly, 

If we assume in (35b) and (35c) that r 0 « Pi« 1IK 
and r 0 « p2 « 1IK, respectively, then we obtain 

'I"~o) (p,) = I (I+~) 
i+zk12a12 P• 

p<o> ( ) 1 (I . a,z ) 
2 Pz = 1+ik12a12 -t- p;- ' (36) 

i.e., in these regions the functions differ from their 
values for zero energy by the same factor. 

In order to find the form of "IJ!<0>(pi2, Pa) in this 
region, where the distance between an arbitrary 
pair of paricles is much larger than r 0, but much 
smaller than the wavelength, Eqs. (35a)- (35c) can 
be substituted in the initial equation (22). Direct 
calculation gives 

'¥(0)(" ~>)- i /1+~), (37) 
'" 12' '" 3 - 1 + ik12a12 \ P12 

i.e., it differs from '1!<0> at E = 0 by the same 
factor. 

Thus, in all the regions (25), the functions 
"IJ!~>(P12• P3) and "IJ!~0 >(Pi2• P3) differ only by the 
factor ( 1 + ik12a12 ) -i. Consequently, such a situa­
tion also prevails in the region p~2 + p~"' d. 
Therefore the matrix element of the reaction (15) 
for the presence of resonance has the form 

<'I"k) (A'' B'' C') I 'I"k+l (A, B)) = 

~ • <'I"~-) (A', B', C') I 'Fb+>(A, B)), (38) 
1-zk12a12 

in zeroth approximation in Kr0; this is the well­
known result of reference 4. 

The purpose of the present work is to obtain 
corrections to (38) of the order of Kro which con­
tain the amplitude ai3 and a2a· 

a) Corrections to the Matrix Element of Order 
Kro 

To find corrections of order Kr0, it is first 
necessary in the solution of Eqs. (31a)- (31c) to 
take into consideration terms containing a 13 and 
a2a, and in the second place to consider correc­
tions of order Kro from the interaction of par­
ticles 1 and 2, which were not treated in the devel-
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opment of these equations (in the derivation of 
(31a)- (31c), terms of order Kro relative to those 
considered were discarded). However, since the 
interaction of particles 1 and 2 is a resonant one 
( Kat2 "" 1 ) , corrections to it are of the order of 
the contribution from the other interactions. 

Corrections of the second type are easily taken 
into account since in their computation the interac­
tion with a third particle is unimportant (consider­
ation of this interaction would give a correction to 
a correction), the interaction of the particles 1 and 
2 changes only the factor in the wave function, with 
accuracy up to terms linear in Kro [see Eq. (3)]. 
Therefore., account of corrections of this type re­
duces to replacing the factor ( 1 + ikt2a 12 ) -t in (35a) 
by the quantity 

-iB. sin o12 _ (I 1 .k _1 {I ki2 r0 a12 } ( ) 
e 1·-k-,-- , t 12 a12) - 2 (i+'k ) , 39 

12 a12 z 12 a12 

r 0 is the effective radius of interaction of particles 
1 and "2. 

To find corrections of the first type we shall 
solve (31a) - (31c) by successive approximations 
relative to ata and a2a. In Eq. (31a) we set 

'Fa ( Pa) = (I + ik12a12) -I sin PaPa + 'F~ (Pa). 
' P.aPa 

(40) 

Then the following equation holds for "IJI3 ( Pa ) : 

'F~ (pa) = a12 ~ G (Pa - p;) 'F~ (p~) d3p; + <I\a (pa) + <I>2a (Pa), 

(41) 
where <Pta ( Pa) and <P 2a ( Pa) are the results of 
substitution in the last two terms of (31a) of the 
functions -.Jif0>(pt) and "IJI~ 0 >(p2 ) from (35b) and 
(35c); 

(41') 

where <Pia ( Pa) and <Pia ( Pa) are the result of sub­
stitution of the first and second terms, respectively, 
from (35b) in Eq. (31a): 

(42) 

(43) 

The function <P 2a ( Pa) differs from <Pta ( Pa) by a 
permutation of indices. 

Equation (41) is easily solved if we proceed to 
the momentum representation. If 

then 

'£'; (p) = [<I>Ia (p) + <I>2a (p)] /(I+ ikpalZ), 

(45) 

k,+Pa 

1 ~· ~ d"q 1 
x-,- dz 4'( . [.( ) . ·] 

2p3 , "' q2 - zD p- p.1aQ/m1 2 - k~ + te 
k,-p3 (46) 

and similarly for <P2a ( p). 
As in the previous cases, we are interested in 

"IJI3 ( Pa) for ro « Pa « 1/ K. In this region, the ex­
pression for 'lira (Pa) is greatly simplified. We 
shall first consider the contribution from <Pia ( p). 
It can be written in a form that is suitable for fur­
ther work by separating out the component that 
does not vanish at E = 0: 

co 
1 a1a 2 \ sin PPsdP 

T p;--;- ~ p(1+T12a12p)" 
0 

(47) 

The first integral vanishes at E = 0 while the sec­
ond does not depend on E. Moreover the first con­
verges at Pa = 0. Therefore, in the region r 0 « Pa 
« 1/K one can set Pa = 0, neglecting terms of 
order Kr0, r 0 /a12 • In this case the contribution 
from <Pia (p) takes the form 

w 

F ( ~)' + a, a 3._ ~· sin xdx a1a 1a '%Q12. ' 
x Pa r. x (1 + XT12a12/Ps) 

(48) 

where 
0 

The contribution from <Pia ( p) can be similarly 
transformed, but by a somewhat more awkward 
method. As shown in the appendix, it has the form 

(49) 
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where 

Taking (48) and (49) into account, we obtain the 
result that for r 0 « p3 « 1/ K, 

• 1 [ G G a1s -r a2s 2 
1¥3 (p3} = 1 +ik12a12 a1aa12 13 + a2aa12 23 + · P• " 

00 00 

X\ sin xdx a 13 + a 23 C a12 2 \ sin dx ] 
) X (1 + Xjnaiz/p~) + Ps Pa-;- j. 1 + Xj12a12/Ps 
0 0 

(50) 

Also, considering the correction (39), we con­
clude that, with the initial accuracy, >¥ ( P12• Pa) 
can be written for p12 "' r 0, Pa » ro, and Pa 
« 1/ K in the form 

00 

+ C (a13 +a..) a12 2 (' sin xdx J 
P2 -;- .) 1 + Xj12a12 IPs ' 

3 0 

(51) 

where 

Thus we have found the correction of order Kro 

to the factor ( 1 + ik12a12 ) -1 in the wave function and 
the correction to the wave function in the region 
p12 "' r 0, p3 » r 0 of order r 0 I p3, which can be of 
interest in a number of problems. 

To find the corrections to the function >¥2 ( P2), 
we set 

To determine >¥2 ( p2), it is necessary to sub­
stitute >¥3 ( p3) from (44) in the third term on the 
right-hand side of (3lb), with account of the cor­
rection (39), and in the second and fourth terms, 
>¥~0 >(p2 ) and >¥f0> ( pt) from (35b) and (35c), re­
spectively. 

The expression for >¥2 ( p2) resulting from such 
substitutions has the form 

f;(au) = m; ~co~. sinxe-a;x (_!_ + Ca12)dx, m. 
IX·= ' 

P2 1-<12 " 1+ 012 x P2 
(J..X- ' V~-<12~-<• ' 

O ' P2 (53) 

for r 0 « p2 « 1/K, i.e., it contains the same con­
stant factor. 

Similar results are obtained for p23 "' r 0, r 0 

« Pt « 1/K and ro « Pt2• P13• P23• « 1/K. 
Therefore, as in the previous cases, it can be 

proved that the matrix element of the reaction (14) 
has the form 
<lf'k->(A', B', C') [ 1¥\t> (A, B)) 

= L•<lf'~->(A', B', C') llf'~+>(A, B)). (54) 

with accuracy up to terms linear relative to Kr0• 

The quantities G13, G23, F13, F 23 entering into 
the expression for L depend both on the energy 
distribution among the particles and on the reso­
nance amplitude of scattering a 12 . If we introduce 
the variables 

u = p;j2p.1E, v = PV2p.2E' w = p;j2p..E' (55) 

which determine the fraction of the entire kinetic 
energy which is associated with the relative motion 
of one of the particles ( 1, 2, and 3 respectively) 
and the center of mass of the other two, then it 
is easy to show that 

G13 = "12x3G (~t. w, a), G2a = "12"aG (~2• w, a), 

f 13 = x 3F (~I> v, a), f 23 = x3f (~2. u, a), (56) 

where 

"12 = Y 2P.12£, X a = V 2p.aE, ~1 = P-13/ P.a = P-12 / P.2 • 
32 = P.2a / P.a = P-12 / P.1> a = "12a12· 

The functions F and G, after computation of 
the part of the intervals entering into (48) and (49), 
can be written in the form 

1 ~' zdz [ --
F (~, u, a) = 2,,yu (i- ~) ~ i+a2(t-z•) 2aV 1 - z2 arc cosz 

z, 

- ir:- 4az fsinh-1a -'-- in') l - 2 
Vi +a2 \ 1 2 J 7taY1+a2 

x J' In ~ (1 + V 1 + a2)- i~ (V a2 + 1 - 1)] (57) 
. ,(.., .... J 7 

here z1 2 = .../ ( 1 - u) {3 =t= .../ u ( 1 - {3) ; 
' 

G (~ w a) = 1 f 'dz f ~ d - iy 
' ' 2-.Y~(1-~)(z2 -z1 ) ~ \.l Y 1+iaY1-y2 

-'1 I) -

xln l(yy~ + v~ (1-y•))2- z•,311 ' r ydy [ 1 
(yV1-~-Y~(1-y2))2 -z2B T ~ 1 +aVy•-1 

,t _1 2V~ (1- ~)y2 (1-y2) _1_tan-1~ V~ l 
·, an Bz• _ y• (1- 2~)- ~ 1 + ay 2~ -1 -' 

• co~· J [ l ~z2 + 2zyV 1 - ~ + y2 - ~ 
- t ydy n · 

1-TiaV1-y2 ~z2 -2zyV1-S+y2 -~ 
() 

-- 1 

- 4z V 1 - ~ J-'- r:(J ( 1 - 3 - z2~) z \ ydy } (58) 
y (1 + ay) ' ' .l 1 + iaY1- y2 ' 

Yo 
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where 

Zr.2 = v~ (1-w) =f V W (1- ~), 

Yo= V~ (I- Z 2~) -!- zl!~ (I-[~), 

8(x)={lx>O, 0<tan-1x<n:.· 
Ox< 0 

In spite of the crudeness of the expressions for 
F and G, these functions can be tabulated without 
great difficulty. 

The differential cross section of the reaction 
(14), as a function of the energy of the third par­
ticle (which interacts in nonresonant fashion) for 
example, and of its angle of emission, which is de­
termined by the angle between the direction of the 
momentum of the incident particles and the plane 
in which the momenta of the particles produced lie, 
has the form 

d'o(£,!1.', cos~)='M l21Ll2Vw(l-w)(E-Eo)2, 
dwd cos it I 0 

L = (I + tk12a12r1 {I - k~2r 0a12 I 2 (I + ik12ad 

+ x12a 12[x3a 13G (~I> w, a) + x3a 23G (~2 , w, a)]} 

+ x3a 13f (~1 , v, a) + x3a 23 f (~2 , u, a), 

where J is the angle between p3 and k12· 
For given w and J, 

(59) 

v = w(l- ~1) +~I( I- w) + 2Vw(1- w) ~I(1-~1)cos-!t, 
u = w (1- ~2) + ~2 (I-w)- 2V w (1- w) ~2 (1 -~2) cos.&. 

(60) 

Thus the terms in the variables w and J in the 
square brackets of (59) are responsible only for 
the energy distribution, while the terms containing 
F ({31, v, a) and F ({32, u, a) also involve the cor­
relation between the momenta p3 and k12 • 

4. ENERGY DISTRIBUTION p + p - p + ~ + K+, 
• p+p-N+l:+K 

Let us consider the energy distribution in the 
following reactions: 

p + p -+ p + l;+ + Ko' 

and assume that the interactions (A, N) and 
( l:, N) are resonant. 

(I) 

(Ila) 

(lib) 

(He) 

In order that this be done, it is necessary to 
take into account the spin and isotopic variables of 
the particles generated. In the case of reaction (I), 
in view of the impossibility of charge exchange, the 
presence of the isotopic spin is not important. Ac­
count of the usual spin leads only to the result that 

p and ~ can be produced both in the singlet and 
in the triplet states. In this case a system of three 
particles of small energy ( p, A0, K+) can depend 
on the internal parity of the system ( ~, K+ ) rela­
tive to the proton, either in the state ( o+' 1 +)' or 
in the states. ( o-' 1- ) . 

However, inasmuch as two protons, as fermions, 
cannot be found in the state 1 +, then, depending on 
the parity of (A, K+ ) in the final state, either only 
the singlet state (p, A0 ) or the singlet plus the 
triplet states are possible. In the first case, the 
expression (59) is completely applicable for the 
reaction (I) if by a12 one means the amplitude of 
scattering of p on ~ in the singlet state - a0• 

In the second case, since the states o- and 1- do 
not interfere, after averaging over the directions 
of the momenta of the incident particles, the reac-
tion cross section has the form 

d2o (E, w, cos&)= V W (1- w) (E -Eo)2 
dwd cos& 

(61) 

where I M0 12 and I M1 12 are the squares of the 
moduli of the matrix elements of creation in the 
singlet and triplet states for zero energy. The 
quantities I L0 12 and I L1 12 are expressions en­
tering into (59), in which, in place of a12 , there 
are substituted respectively a 0 and a1 - the 
scattering amplitudes of (p, ~) in the singlet 
and triplet states. 

In the case of the reactions ( IIa, b, c) the situ­
ation is entirely similar in the behavior of the spin 
variables; however consideration of the isotopic 
spin materially changes the final result. In this 
case, the equations ( 31a, b, c) are more compli­
cated, inasmuch as for Pil"' r 0 the wave function 
cpu ( Pil) of the particles i and l is a superpo­
sition of functions with different isotopic spin Til 
<%. % for N, l:; 0, 1 for N and K; %. % for l: 
and K). We shall not repeat the calculations but 
merely write down the final result which is almost 
self -evident. 

In place of the matrix element of the reactions 
(IIa, b, c), which we denote by M+O+• M++O• Mo++• 
we introduce the matrix elements M112, Ma;2 of 
transitions into states with a total isotopic spin 
T = 1 and isotopic spin of N and l: , T 12 = % 
and%: 

M+o+ = (I / V3) M,,,- (I I V6) M.,, M++o = (1/;j / 2) M.~,, 

Mo++ = - V2JaM,;,- (I /2 }F3) M.,,. (62) 

We can now write 

MT, = ~ <T12l L 1 r;2>·M~· 
12 

T 12 

(63) 
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in place of Eq. (54). 
To obtain <T12 1 LITh> from (52), it suffices 

to note the following. The term 

( 1 --i- ik12a12r1 [ 1 - ki2r 0a12 / 2 ( 1 -+- ik12ad I 

depends only on the interaction of N, ~ , for which 
T12 coes not change. Therefore, it gives a contri­
bution to < T 12 1 L I Th > of the form 

(1 + ik12ar.,f1 [1-k~2r~"ar, j 2 (1 + ik12ar,)l 

(64) 

aT12 , rl12 are the scattering amplitude and the 
effective radius in the state with' isotopic spin T12 . 
The term K3a 13F ({31, v, a) + K3a23F ({32, u, a), as 
is easily seen from the derivation, is a contribution 
from processes in which the interaction of particles 
1 and 2 enter, and then the interaction of particles 
1 and 3 or 2 and 3. The interaction of particles 1 
and 3 or 2 and 3 changes the isotopic spin of the 
particles 1 and 2 ( T 12 ) . Therefore a 13 and a23 
are replaced by 

(T12 I b I T~2> = ~ S (T12. Td br,,S (T13 , T~2 ), 
r, 

<Tl2[ c I r;2> = ~ s (7'12· T2a) Cr,.S (T~a. T~2), (65) 
T, 

where bT13 and CT23 are the scattering ampli­
tudes of ( K, N) and ( K, ~ ) , respectively, in 
states with a definite isotopic spin. 

The coefficients S ( T 12, T 13) and S ( T 12, T 23 ) 
are determined by the rules of addition of moments 
and are simply connected with the Racah coeffi­
cients, for example 

S (T12. T1,,) = y·(Ll'12 +I) (2Tla + I)W(I, 1/2. I, 1/2; T12. Td. 

Simultaneously, 

The remaining terms correspond to the successive 
interactions of particles 1 and 2, 1 and 3, or 2 and 
3, and then again 1 and 2. Therefore, they are re­
placed by 

+ xa(T12!cj T~2)G(~ 2,w,x12a, )]. 
T 1~ 

By making use of all of the above, it is easy to 
obtain the following relations between Mv2 or 
M3; 2 and their values at zero energy, M~;2 or 

M~/2• 

M•;,={(X•;,+xa ~ (2b1+bo>f1(-}, ~) 

-t-x3 {(8C•;,-t-Ct;,)f2(-}, {)} M~;. 

+ xa {~2 (b1- b0 ) f 1 ( ~ , -}) 

+ 2 Y.2 ( f ( 1 3 ) }. 0 -9- C·;,- C•;,) 2 2 ' 2 M.;,. 

Ma;, = {(X•;, + xa } (61 + 2bo)fi ({, f) 

+ x3 { (c•;, + 8c.;,) f 2 ( f, })} • M~;. 
. {-vz ( 3 1) -r- xa 3 (b1- bo) f 1 2 , 2 

2 -vz ( 3 1 )}. o + -9- (C•;,- C•;,) f 2 T ' 2 M.,, 

where 

(66) 

f2(T12, T~2) = F(~2,u,xl2ar·)+ 1 :1i2:r~ G(~2,W,><12 ,ar·)· 
\ 12 12 T12 12 

(67) 

Equations (62) and (66) allow us to find the cross 
section of the three reactions (II) depending on the 
ratio M~;2 /M~;2 and the amplitudes of pair inter­
actions. 

In conclusion I wish to express my gratitude to 
Academician L. D. Landau, K. A. Ter-Martirosyan, 
I. T. Dyatlov, and A. A. Ansel'm for valuable dis­
cussions. 

APPENDIX 

Calculation of the contribution from 41f3 [ Eq. 
(49)]. To obtain (49) it is convenient first to inte­
grate over the modulus q in (46). In this case 
we obtain 

(a) 
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where the relation J.L12J.L3 lm~ + 1 = J.L3 I J.L13 = J.L2 I J.L12 
is employed. 

The contribution from 4>1'3 ( p) in ..V3 ( p3 ) has 
the form 

4 ~ sin PPs ¢~ (p) 2d 
7t --1 "k p p. 

PPs + l pa12 
(b) 

For piK- oo, 

¢;3 (p) a.zan { 1 
1 + ikpa11 = 1 + ik12au p (1 + PTuau) 

(c) 

Therefore, if we write down 

¢~3 lP) _ a12a13 {a (p)+ C 
1 + ikpau - 1 + ik1za1z 13 21t2p (1 + PT12a12) 

ik12a12 } C = m1 tan -1 1 / !'-lzl'-s , (d) 
21t2p2 (1 + PTuau) ' 1-'-n V m~ 

then G13 (p) "' 1lp4 for p{ K - oo and, consequently, 
one can set p3 = 0 in the term containing G13, in 
the integral (b) for p3 « 11 K. Substituting (a) in 

(b) and taking into account this observation, we ob­
tain the result given in the text [Eq. (49)]. 
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