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The possibility of determining the scattering amplitudes of unstable particles by analyzing
the energy and angular distributions of reactions in which they are produced is considered.
Reactions are discussed involving the formation of two particles (7 + N— A + K, Z + K)
and three particles (N+ N— N+ A + K), two of which interact by resonance at low energy.

1. INTRODUCTION

OF the elementary particles known at the present
time, the majority are unstable. This circumstance
greatly complicates the study of their interaction,
inasmuch as it is impossible to carry out direct
experiments on the scattering of unstable particles
by each other. Therefore, it is-important to find
indirect means for the measurement of quantities
characterizing the interaction of unstable particles.

In the recent papers of Chew,! Chew and Low,2
and Pomeranchuk and Okun’? the possibility was
considered of measuring the scattering amplitudes
of unstable particles by each other by means of an
analytic continuation of the cross sections of proc-
esses taking place with stable particles or by
measurement of the phases of the scattering cor-
responding to large orbital momentum. This mode
of measurement is extremely attractive inasmuch
as it can give information on the interaction of un-
stable particles over a wide range of energies and
transferred momenta. However, practical appli-
cation of this method is at present complicated be-
cause of the non-uniqueness of the analytic continu-
ation of cross sections and the difficulties of meas-
urement of phases with large momenta.

Another method of measurement of quantities
characterizing the interaction of unstable particles
is based on a study of reactions with production of
these particles close to threshold or at the limit of
the spectrum.®"® This method is more limited by
reason of the fact that it affords a possibility of
determining the scattering amplitudes of unstable
particles only for zero energy of their relative
motion. However, it is entirely unambiguous and
much simpler than the method of Chew et al. Up
to recent times, this method has been used only
in the case of reactions with production of three

particles, two of which interact by resonance at
low energy (Migdal and Watson®).

In references 5 and 6, reactions were consid-
ered with the production of three particles of low
energy which interact in nonresonant fashion.

For the determination of the scattering amplitudes
of the generated particles in certain reactions, for
example, " +p—n+7t+71, n+ 0+, p+ 7
+ n', it was shown to be sufficient to measure their
energy distribution, and in the others (K*— 27°

+ 7, 2n% + 7*) it was necessary to measure the
correlation between directions of their emission.

The possibility of determining amplitudes in
these cases is brought about for different physical
reasons, as will be made clear in what follows.

In the first case, the possibility of determining
the amplitudes is based on the fact that if we con-
sider the matrix element of a reaction (taking
place in a certain volume of radius r;) as a func-
tion of the momenta of the produced particle pj,
then the terms linear in pjry, are completely de-
termined by the amplitudes of pair scattering. In
turn this is explained by the fact that the wave func-
tion of the three particles at pj = 0, in the region
of distances of the order of r, between particles,
differs from the function for zero energy (pj =0),
with accuracy up to terms linear in pjry, only by
a factor that is determined by the behavior of the
wave function at large distances between the par-
ticles.

However, in a number of cases (for example in
the reactions K*— 2r*+ 7=, 27’ + %) in squaring
the matrix element terms linear in pjry drop out
from the expression for the cross section. In
these cases, measurement of the energy distribu-
tion does not allow us to determine the amplitudes
of pair scattering. None the less, as was shown in
detail in reference 5, thanks to the effect of the
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centrifugal barrier, correlations between the di-
rections of flight of the particles are fundamentally
determined by pair interactions.

In the present work, the possibilities are dis-
cussed (Sec. 2) of the determination of scattering
amplitudes of unstable particles (A, K; Z, K)
from a study of reactions with the formation of
two particles (t+ N— A+ K, 7+ N—2Z + K).
The basic idea used in the study of reactions with
the formation of three particles also becomes
clear from this section.

In Secs. 3 and4 we study in detail reactions with
formation of three particles (of the type N+ N
— N + A + K) under the assumption that the inter-
action of two of the particles (N, A) has a reso-
nance character for low energies.

In contrast to Migdal," we consider not only the
resonance interaction but also the interaction of a
third particle (for example, K) with two resonant
interacting particles (N, A). Account of these in-
teractions leads to corrections to the energy dis-
tribution of the produced particles [see, for ex-
ample, Eq. (52)]. These corrections are of the
order pijr, and are expressed only by amplitudes
of pair interactions and the effective radius of the
resonant interaction.

Study of the energy distribution of the particles
produced allows us in this case to measure the
scattering amplitudes of all three formed particles
on each other and also the effective radius of reso-
nance interaction.

2. REACTIONS WITH FORMATION OF TWO
LOW-ENERGY PARTICLES

Let us consider a reaction of the type
A+ B—> A"+ B, (1)

where mA + mpB < mA’+ mp’ (m = mass of the
corresponding particle). The matrix element of
such a reaction

M=V (A, B[P (4, B, (2)

depends on the energy E in the center of mass sys-
tem (c.m.s.) as an explicit function of the initial
and also the final state.

However, as was noted in reference 6, one can
show that the matrix element

CYE (A, By | YE (A, B,

where E;, the threshold energy of the reaction (1),
is an analytic function of E near E = E), with the
exception of special cases. It can therefdre, with
accuracy up to terms of order krj, be replaced
b¥ the matrix element M, = <\I/E; (A7, B") |

\Ilﬁ()) (A, B)>, where r, is the effective interac-

tion radius, k®=2u(E-E;) and p is the reduced
mass of the particles A’ and B’. Therefore, ac-
curate to terms linear in kr,, the dependence of
the matrix element M on the energy is determined
as a function of the final state. This dependence is
usually easily found because of the fact that the
Schridinger equation for the function ¥{;’ (A’, B')
contains only k* and, consequently, the depend-
ence on k appears only as a result of the bound-
ary condition at infinity. Since only the S -state
gives a contribution to (2) at low energy, then (for
distances between particles r > rj),

1},.(’5_) (A', B') ——is sin(l;r + 3) )

r
6 is the phase of S -scattering of the particles A’
and B’. For ry<r < 1/k,
WA BY=e—3 08 (1 L hcots+0 (k2]

T

—eo 914 Lok (3)

where a = 6/k|k= is the scattering amplitude,
whence it follows that, with accuracy up to terms
of order kry, the function ¥{ differs from the
function \I/E; by the factor

Faen S0 M= (V) (4, B) | VE)(4, B
= F (¥E | vED. 4)
However, if a ~ r, (nonresonant case), then
we may expand e710 sin 6 in a series with the ac-

curacy considered thus far. Then F =1 -ika and,
consequently, the cross section of reaction (1) is

s(A+B— A+ B)y=Fk(l +2kIma)|M,[>.  (5)

Thus, by measuring the cross section of the re-
action (1), one can determine Im a = (k/47)0’;
o’ is the total interaction cross section of particles
A’ and B’, which, because of the possibility of the
reaction A’ + B® — A + B, is proportional to 1/k.
If other channels than A’ + B’ — A + B are pos-
sible in the interaction of A’ and B’, then ¢’ is
not expressed directly in terms of o.

Evidently the most interesting reactions of this

type are
-+ p—A°+ KO, (6)

ot 4+ p— Xt 4+ K*. (6"

Since the reactions
A+ KO~ N +=r, N+ 2r,

N +3rn, N44n, - )
are possible at zero energies of A and K% then
o’ is not expressed directly in terms of g. Fur-
thermore, from the unitarity property of the S-
matrix, considering that the contribution of the
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last two reactions of (7) is small because of the
smallness of the phase volume, we find that
Ima=(k/42) {s(A°, K= N, =)

~ (A", K =N, =, m)). (8)

Thus, by measuring the dependence of the cross
section of reaction (5) on energy, we measure the
cross section of the reaction A’ + K' =N+ 7+ 7
at low energy of A’ and K.

The reaction (6’) can be considered in an analo-
gous manner. One deficiency of this method is that
only the imaginary part of the scattering amplitude
is determined. As will be seen below, the real part
of a can be determined from a study of the reac-
tions

p+p—A K +p, ptp—>I K +n,

p4+p—St+Kotp,  pHpo04K 4p (9)

Other interesting possibilities of measurement
of scattering amplitudes of unstable particles are
uncovered if several channels with neighboring
thresholds are possible in a reaction of type (1).
As an example, let us consider a reaction with the
formation of £ and K particles:

(10a)
(10b)

="+ p—L +K*,
73——'—p'—>u0'T‘K°

In this case it is immediately advantageous to
make use of isotopic invariance. The state (77, p)
is the superposition of states with isotopic spin T
=Y and T =%, For matrix elements with the
definite isotopic spins M;/; and Mj/,, one can
write down relations that are analogous to (4):

My, = (1 + ikai,) MY, My, = (1 + ikas) M3, (11)

ay;, and ag, are the scattering amplitudes of =
and K in the states with isotopic spin %, and %,.

From this it is easy to obtain the following ex-
pression for the cross section of the reactions
(10a) and (10b):

s_, =—;—klM=/ (1 + 2V 2xcosq -2x?)

r (a5, + V2a],€®) (1 + V2ze™7%)
X Ll—Qk Im 1+ 2V 32xcos o L 222 ]’ (12)
‘ —_ 2
S0 = 5 k| MU (1 —V 2xcosg -+ F)
(0, + 2al,e® | VI) (1 — 2o~ ﬁ}
X — 2k —2 B
[1 1—V2xcoso+a2/2 ’ (13)

where x, ¢ are the modulus and phase relation
of the matrix elements Mg/z / Mg/z. The values of
X and ¢ can be determined, for example, from
the ratio of the cross section of reactions (10a)
and (10b) to the cross section of the reaction (6)
(in which the same Mj/, and aj/, enter). Then,
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by measuring the energy dependence of the cross
section one can, by means of (12) and (13), find
two relations between ay;; and ag;. Inasmuch
as Im ay/, is determined independently from the
cross section of the reaction (6’), then three un-
known quantities enter into these two relations.
For a unique determination of all the quantities,
it is necessary to study simultaneously reactions
with the production of three particles.

3. REACTIONS WITH THE FORMATION OF
THREE LOW-ENERGY PARTICLES, TWO
OF WHICH UNDERGO RESONANCE INTER-
ACTION

a) Nonresonant interaction

To establish the energy distribution in a reac-
tion of the type

ALB A B (' (14)

at energies close to threshold, one can proceed in
a fashion similar to what was done for binary reac-
tions. The wave function ‘I’E of the S -state of
the three particles, A’, B’, C’ in the center-of-
mass system (in what follows we shall enumerate
these with the indices 1, 2, 3) has the form

‘{P(E_) (rlv Ia, rS) = q) (rly ro, r3) ”12 e)\p ( lkloply) sin P3P3
sin pape ds3 _ sin Sin pipy
P I8 exp (— ikyopq) 22 i exp( iRygpeg) ——— e
(15)
at large distances between all particles. The spin

variables are omitted everywhere in what follows
for simplicity; pjk is the distance between par-
ticles “i” and “k”, p; is the distance from the
particle I to the center of mass of the two other
particles,

k; = (mp; — mpy) [ (m; — my), (15a)

pi are the momenta of the particles in the ¢.m.s.,
aj; are the amplitudes of scattering of pairs of
particles at zero energy, mj; are the masses of
the particles, and & (ry, ry, r3) is the wave func-
tion of three free particles with a total orbital mo-
mentum equal to zero and with a fixed energy for
each particle. The function & (ry, ry, r3) is the
mean value of the function

eXP ({pafy =+ iPafs =~ ipsrs) = exp (ikyap1o + iPaps) =

(15b)

over all orientations of the plane in which the vec-
tors py, p; and ps lie. If the state of the three
particles is to be characterized not by the mo-
menta p;, P, and ps, but by their magnitudes py,
P2, P3, and the Euler angles 6; of the coordinate
system that has two axes in the plane of these
vectors, then



SCATTERING AMPLITUDES OF UNSTABLE PARTICLES AT ZERO ENERGY 403

D (ry, o, 15) = D@y, , 1, (P125 D13, P23)

1 . . .
= g2 S exp (ipiry = ipars ++ ipsrs) db;. (16)

Equation (16) is almost self-evident, and can easily
be obtained from equations which will be presented
below. We note only that it is valid under the con-
ditions

pit >y, pu > a. 17)

We assume as in the case of two particles that the
distances pj; are such that

1/ ki > pu > au, r, (18)
Then, expanding in a series and limiting ourselves
to terms that are linear in a/p, ka, we obtain

W) = 12 ayy/pra - Qys [ 13 + Gos [ oz — ikyoays

— iky30y3 — [RogQuy = (1 — k1ol — ik13015 — ikoglyg)
X (1 4 @12/ p12 -+ @13/ P13 + Qo3 / Pas) (19)

in place of (15). Inasmuch as terms linear in kr,
cannot appear from the interaction at small dis-
tances, as has already been noted, then even at
small distances between the particles, the function
\Ir(ﬁ) differs from the function \I/E) only in the fac-
tor 1- iklzaiz - ik13a.13 - ik233.23- This result was
used in references 5 and 6.

However, as is well known, in the interaction
of nucleons, the scattering amplitude at zero en-
ergy a > r; and the condition ka < 1 are ob-
served only in a very narrow range of energies.
Therefore it is necessary to obtain a result which
is free from the restriction ka «< 1 (the restric-
tion kry « 1, naturally, remains).

In the case in which all the amplitudes aj; > r,,
the problem becomes very complicated’ and there-
fore we shall limit ourselves to the case in which
only a single amplitude a;y > ry, while the ampli-
tudes ay3, as3 ~ ry. This case takes place for re-
actions of the type N+ N— N + N + 7, and in the
reactions

N-N—->N+A4+K, N+ N->NLELK, (20)

if we assume that all the baryons interact in reso-
nant fashion at low energies. Since the simple for-
mula (15) is no longer useful in this case, more
detailed analysis of the wave function of the three-
particle system is necessary to obtain results.

b) The System of Equations for the Wave
Function of Three Particles

For the investigation of the wave function of
three particles, it is convenient to introduce the
Jacobi coordinates pj9, p3, Or Pi3, Pz, Or Pa3, Py-
In the variables py, and p;, the Schrodinger
equation has the form

1 e 1 o2 . \
[_ Dpae Ve — g Vo, + Vi (010)+ Vis (P13)

4 Vag (025) = Vios |+ Wp= EV, 1)

1/{}’12: 1/m1+ l/mz ,1/!143———1//713 "}‘1/(m1+mg).

We note that the assumption as to the existence of
interaction potentials is introduced only for sim-
plicity and final results are not dependent on it.

In order to take the asymptotic conditions into
account explicitly (since we are interested in func-
tions of the final state, ¥y at infinity must have
the form of an incident plus an outgoing wave), it
is convenient to write down the equation in inte-
gral form:

Ve (p12, 23) =D (p12) 1)
- \G (P12 — Plx'.’, Ps—P:;) Via (Pls) Ye (P;m F;)ds{);zds.’/.;-

»

—\ G (pro— p1a 82— ) Vs (010) 'z (1o, £2) d015 %2
— (=2 —{Glpis —piz 25— ) Viao (o1, #)
X W (pro, ps) d%p1s d®p;. (22)
®(py3, p3) is a function defined by (16),

G (012, 03) = G (P13, 02) = G (P22, 01)

__ { 2pdk exp {i (pz3 + kgi2)} (23)
S (27)® p?/2p3+ k¥ Zpe —E + e’

The following expressions will also be convenient:

‘-‘l'kppxz

_ e dp . &
G (912: P3) - 2—”8 (:)‘.,:):;elpp P12

27(2) ) 2

1 1, * H2 XVRI 12P12_L'73P3)

[ (r12183) T3 . .2
(12P15 = T3P3

’

ky = V 2u2 (E — p* /[ 2113),
v =V 2 (taatts) "E, 1o = 1 /s = (32 [ t10) ", (24)

H{® are the Hankel functions. All the quadratic
roots of the type kp entering into what follows
are determined for p?/2u; >E as —iVp?/2u;—E .
In the matrix element of production of three par-
ticles in which we are interested, the wave function
¥r enters in the region pyy ~ p3 ~ ry. We want to
prove that in this region, with accuracy up to terms
linear in kry, ¥g differs from ¥, only by an en-
ergy dependent factor; we want to find an expres-
sion for this factor in terms of the amplitude of
the pair interaction (E; =0).
In order to accomplish this, it suffices to show
that ¥, differs from ¥, by a factor in region

1% >0}, + 03 > 15 (25)

In this region one can always neglect the contribu-
tion of the three particle interaction [the last term
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in (22)]. Actually, by making use of the explicit ex-
pression of the Green’s function (24), we obtain the
result that the last term is equal to

—i (r*m*s)

(1262, + 73p3)?

Svlzs (Pizy P3) v (Piz: Fa) d3{1;2 d3P;

fo pa—
~ mw(’ o 7o)
if Vypard (uypus)¥? ~ 1. If the interactions of par-
ticles 1, 3; 2, 3 and 1, 2, 3 are nonresonant,,then
¥ (ry, Tg) ~ a;/ry. Consequently, it is of the order
a4rd/ (ylzpfz + v30%)%, which, as will be seen, is
much smaller than the contribution from the two
particle interactions. Omitting this term, we con-
sider in more detail the remaining terms in Eq.
(22). In this case, it is easy to make note of the
following important circumstance: if the variables
on the left hand side are changed in the region (25)
or even simply in the region p%, + pi > r3, then
the function appears in one of the three regions
P12 ~ Ty, p3 >> g pyg ~ To, Pz > Iy Pa3 ~ Iy,
p1 > ry, on the right hand side under the integral.
Therefore, if we were to know ¥ in all these re-
glons then we would find ¥ in the region p12 + p3
> ro and, consequently, in the region (25).

We shall show that in each of these regions,
respectively, the function ¥r has the form
P12 (p12) ¥3(p3)s @13 (p13) T2 (p2)s @23 (p23) ¥4 (py)
with accuracy up to terms linear in kr;, where
@41 is the wave function of the particles “i” and
“1” at zero energy, while the functions ¥j (pj)
satisfy some set of equations in which as unknown
parameters there appear only the amplitudes of
pair interactions. For solution of these equations
it is shown that if pj < 1/k, then all the functions
¥; (pi) differ from their values for E =0 by one
and the same factor. The latter also leads to the
result that the entire function ¥ (pyy, p;) differs
from its value at E =0 by the same factor. Si-
multaneously, the functions ¥j(pj) are found;
these can be used in a number of other problems.

In order to prove these assertions, we consider
as an example the region p;, ~ ry, ps > ry.

In this regjon we want to expand the right hand
side of (22) in powers of kry and r,/p;. For this
purpose, it is convenient to represent the function
G (p12 —piz, p3—p3) in the form
G (p1z —p12, ps— p3) = 8(ps— p3) Eﬁg:zu——pml

p,z d3p i (ps—03) exp {ik, ]pm—p12 Iy —
T3 S (@2n)? € | P12 — Plg |

(26)

We can now carry out the indicated expansion in
all terms except that containing 6 (p;—p3). In
first approximation, we obtain (py; ~ ry, p3 > ry):
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Vi (p

¥ (s ) = Falo) — 22 | 20y
12

(P12, ps) d* ')12, 27

P o) = 20— 22 (6o (py — 1) W (pias £2) Vs ()

X d3f’;2 d3P;,— S G(Ps,'— ;“1 Ps— Pz) Vis (Plla)T(P;s{Plz):d%;a dsP;

g (Pay — F Ps_Pl\ Vas (P 3) ¥ (P23,P1) a3 Pﬂsa Pp
where
. d3p
4aw

and the relations among py3, Py, py3, p; and P12s
p3, and the smallness of p;, are taken into account
in the latter terms of (28). But it follows immedi-
ately from (27) that ¥ (py, p3) = @15 (p12) ¥3 (p3)
for P12 ~ Ty, p3 > Iy, where (plz(piz) satisfies
the equation

(28)

El’D(P;‘_pa) V-QP'JS (E —_ p2/ 2py)

Gyp (ps— P;) =

¢ Vi (ppo)
}le Slpi—pml P12 (Pm) as 9127

i.e., it is the wave function of particles 1 and 2 for
zZero energy.

Repeating these discussions for two other re-
gions, we obtain

¥ (P13, p2) = P15 (P1a) ¥ (p2) for pia~ro, pa>ro,
Y (P23, P1) = @as(pas) ¥y (pr) for pyu~ro, pi>r,  (30)

with the expressions for ¥, (p;) and ¥, (p,) ob-
tained from (28) by substitution of indices.

However, if we now take it into account that
the wave function enters the right hand side of (28)
in precisely the regions under consideration, then
we can substitute (29) and (30) in (28). In this case
we obtain the following relation among the functions
‘I’l, ‘1’2, and ‘1/3‘

W (ps) = ol PsPs + a2 S Gy2 (ps — P3) ¥ (Pz) d393

P12 (P12) = 1— (29)

2

9 , . ,
—%—- [J-—:. Qi3 S G (p3y- &p:{ - pz) ]Fz (pﬁ) d3P2
H%SG@&————pa—PﬂTH@Odm,
iy =— 278 i (pir) @ur (pit) BPpua, (31a)

where aj; is the scattering amplitude of the par-
ticles “i” and “I1” at zero energy.

Substituting (29) — (30) in the expressions for
¥y (py) and ¥ (py) (which we have not written
out), we obtain

Ve (o) =202 4 s { Gy (po — p2) Wa () 4%,

. 2m wia
V0 (o — e

- 3:3 SG (b2 — 22 s — 1) ¥4 ) &,

p) s (es) ',

(31b)
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Wy (o1) = R 0 { Gas (p1— 1) Wi ()

. 2z [ ’ . y
R SG‘\PL - %2"2 P1— Ps) W5 (ps) d°ps

-+ 2 S G (Pl, — —*:%:‘ f1— Pz) ¥, (Pz) ng,z-

P1s (31 c)

Equations (31a), (31b), and (31c) represent a
system of three integral equations with functions
¥ (p), ¥ (p), and ¥3(p). This system of equa-
tions is identical with the system of equations ob-
tained by Skornyakov and Ter-Martirosyan® with
the help of boundary conditions for the wave func-
tions in the case in which all three interactions
have a resonance character. As is seen from the
foregoing, these equations follow naturally from
the initial Schrodinger equation without any as-
sumptions on the resonance of all interactions.

In order to estimate the order of magnitude of
the individual terms in each of these equations,
and also the order of magnitude of the terms neg-
lected in their derivation, we consider their solu-
tion by the method of successive approximations.
For this purpose, we substitute, on the right hand
side of (31a) for example,

PO _ sin pip1 (0) __ Sin paps , ‘F(so’ __ sinpsps. . (32)

PiP1 P2p2 PsPs

By making use of (24), we obtain

__ sinpsps | — ik ays eik""= sin (pepsitas [ ma)
¥, (ps) aps ( 12019) + P3 Papsit1s / My

’

Qa3 ;b o SIN(D1psiias / My

+ s efnes lglP:st / ma ) (33)
from which it follows that if all the interactions
are nonresonant (ajj ~rj), then the correction
terms ~ kry, ry/ps < 1 and the application of
successive approximations is valid. The neg-
lected terms in this case are of the order ( KI‘O)Z,
rokry/ps, 15/p3-

If ry< p3< 1/k, then
W3 (pg)= (1— ik12@15 — iR13015 — ikas@as)(1 + a3/ ps 4+ Qa3 / ps)

(34)
in agreement with (20).

When all three interactions are resonant (ajj
> ry, Kaj;~ 1), none of the correction terms is
small, and it is necessary to find a method of ex-
act solution of Egs. (31). The neglected terms in
this case are of the order of kr, and ry/ps.

In our present work, we are interested in the
case in which only one of the interactions has a
resonance character (aj; > ry, a3~ az;~ ry).

In this case, we can neglect the last two terms in
Eq. (31a) in the zeroth approximation. This equa-
tion is then easily solved. If we set ¥"

= A (sin p3p3)/p3p3, then it follows from Eq. (31a)
that

A= (1 + ikypar) ™ (352)

To find ¥ (py), ¥;(py) in this same approxima-
tion, it suffices to substitute ¥{”(p;) in the third
term on the right in (31b) and (31c), and to neglect
the second and fourth terms. We then have

(0) sin pipx a1 e‘ik""‘ sin (r12p3p1 | m2)
v (o) pipr  1tikpaiz p P12P3py [ Mo (35b)

and, similarly,

i —ikiPe o3
L0 _ SiRpapp f’” [4 sin (p12pape / m1) 3
2 (p) pepe ' Ld-ikpais  pe Wigpape /m1 (35¢)

If we assume in (35b) and (35¢c) that ry < p; < 1/k
and r; < p; < 1/k, respectively, then we obtain

@py—__ 1 (1. &)
v () = 1+ik12a,2(1 Cop

1 . a
2 (02) = gt (L 50) (36)
i.e., in these regions the functions differ from their
values for zero energy by the same factor.

In order to find the form of ¥%(py,, p3) in this
region, where the distance between an arbitrary
pair of paricles is much larger than ry, but much
smaller than the wavelength, Egs. (35a) — (35¢) can
be substituted in the initial equation (22). Direct
calculation gives

WOpra, po) = e |1+ 22), (37)

14 ikpas \ P12
i.e., it differs from ¥ at E =0 by the same
factor.

Thus, in all the regions (25), the functions
U (p1a, p3) and ¥ (py, p3) differ only by the
factor (1+ikga;,)”!. Consequently, such a situa-
tion also prevails in the region p}, + p? ~ r3.
Therefore the matrix element of the reaction (15)
for the presence of resonance has the form
Y (&, B, C)| YE (4, B)) =

— L ¥ @, B, C) YA, B, (38)

1— ikaa,

in zeroth approximation in «krj; this is the well-
known result of reference 4.

The purpose of the present work is to obtain
corrections to (38) of the order of kry, which con-

tain the amplitude a3 and a;.
a) Corrections to the Matrix Element of Order

KTy

To find corrections of order kry, it is first
necessary in the solution of Egs. (31a) — (31c) to
take into consideration terms containing a;3 and
ay3, and in the second place to consider correc-
tions of order «r; from the interaction of par-
ticles 1 and 2, which were not treated in the devel-
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opment of these equations (in the derivation of
(31a) — (31c), terms of order kr, relative to those
considered were discarded). However, since the
interaction of particles 1 and 2 is a resonant one
(kajy ~ 1), corrections to it are of the order of
the contribution from the other interactions.
Corrections of the second type are easily taken
into account since in their computation the interac-
tion with a third particle is unimportant (consider-
ation of this interaction would give a correction to
a correction), the interaction of the particles 1 and
2 changes only the factor in the wave function, with
accuracy up to terms linear in «kr;, [see Eq. (3)].
Therefore, account of corrections of this type re-
duces to replacing the factor (1+ikyas,)~! in (35a)
by the quantity

o
ki‘2 roQie

o L
= (1 4 ik ay,) lll—m}» (39)

sin d12

o812
k12 1o

ry is the effective radius of interaction of particles
1 and 2.

To find corrections of the first type we shall
solve (31a) — (31c) by successive approximations
relative to a;3 and a,;. In Eq. (31a) we set

Walos) = (1 + iba) SR L W) (40)
Then the following equation holds for ¥} (ps):

W, (pe) = 12 G (b5 — £3) W5 (65) % -+ Dug (p2) + Pas ),

(41)
where &;3(p3) and &,3(p3) are the results of
substitution in the last two terms of (31a) of the
functions ¥{V(p;) and ¥{"(p,) from (35b) and
(35¢);

D3 (ps) = D5 (ps) + D13 (ps), (41')

where @{3(p3) and @{;(p3) are the result of sub-
stitution of the first and second terms, respectively,
from (35b) in Eq. (31a):

. ’ k:=+P;
/ oo, S PoPs3 ¢ —ize,
Ll N S
Ps Pas 25, o
ku—ﬁ2
Fre p; [ . t13 ik
@ (03) = a3 1 gdzg % exp [_- i9es i qps}
1303 1 ik1a1, 2p'3 ) =) P
I\’xz—-ps
Pa={t1sP2/My,  P3= tiaPs [ My,
b= VI E 0. n—z—is, cm0.  (@3)

The function &,3(p3) differs from &3(p;) by a
permutation of indices.

Equation (41) is easily solved if we proceed to
the momentum representation. If
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Wi (o) = 4 | 22 W (p) pidp, (44)
then
Wy (P) = (P15 (p) + Pas (P)] /(1 + ikpays),
ko =V 212 (E — p*/25) ) (45)
kn'H’z
. . . a
V() = Pa(p) + D). V)= g | de s
. v,
R -
klz'*‘P:;
1 ¢ &g 1
’ dz\ o—¢ I 2 3
% 2py S . g 4mt (42 — zé) l(P — .U~13€l/ml)2 — Ry + lE]
klz*p3 (46)

and similarly for &, (p).

As in the previous cases, we are interested in
U4 (p3) for ry < p3 < 1/k. In this region, the ex-
pression for ¥} (p3) is greatly simplified. We
shall first consider the contribution from &{3(p).
It can be written in a form that is suitable for fur-
ther work by separating out the component that
does not vanish at E = 0:

k,.+p'2\ oo X
Qs Sin pps

; S dz§ pzdp—ppa—~

ku‘—Pz

1 1
X[ (P*—2) (1 + ikyayg) P <1+mamp>}
[ee]

u‘“_SES
TPaﬂ
0

sin ppsdp

p(1+712812P) (47

The first integral vanishes at E = 0 while the sec-
ond does not depend on E. Moreover the first con-
verges at p; = 0. Therefore, in the region rj, < pg
< 1/k one can set p3 =0, neglecting terms of
order Kkry, ro/aj;. In this case the contribution
from &{;(p) takes the form

ay3F, ("-alz, %) + %jf %}

sin xdx

e (48)
X (1 + xY12012/p3)

where
p
Fis (V-amv 72>

k xs+l72 )

= w; S dz§dp

kn—/’2

a12p? (T12p — ikp) + 2% (1 + ik a10)
(P — 25) (1 + ik pars) (1+prizang)

The contribution from &{;(p) can be similarly
transformed, but by a somewhat more awkward
method. As shown in the appendix, it has the form

Gys (“alzy %‘)

Qy12th3
1+ikisas

sin xdx
x (L 4+ xY12a12 / p3)

sin xax

ay20;5C
: 1+ x7iea12/pa ’

{1 + ikigayp)pd

_m 24 Hi2t3
C=-tan l/ T

(49)
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where
k:z'{'l—i«; 1 e
ps i 2 z
Qoo 3\ = — . -
Gys (X 1257, ) 2, S ’ dz deg p*dp {1 + ikpai
klz—PS -1 0
[ 22 o Pz )_l'ﬁ_li_—-————z——
(z + 2pzx T 3P — 2u1E vz P2 (1 + priaaie)

3 ——>— b

2
14 z
X [ (l/zl*m (E — p? | 2p13) —l—p.izpzﬂ/mf + piepx / ml)z_‘ 22 ]

=)

Taking (48) and (49) into account, we obtain the
result that for ry < p3 < 1/k,

oot i /e =
1+ ikja p (14 priaa1e) P13 P12t
2

m

1

, 1 13 + Q. 2
¥, (Ps) = m[alaalzcls + Q23012Gs3 + Tzs‘ -
[ee]
5 0 sin xdx Qs -+ ass c a2 2 S sindx ]
S X0+ Xnalp) T ps bs 7 1+ x712a12/p3
0

4+ a13F 15 + G55F o5. (50)
Also, considering the correction (39), we con-
clude that, with the initial accuracy, ¥ (py3, p3)
can be written for pjy ~ ry, p3 > ry, and p3
« 1/k in the form -
¥ (P12, p3) = Lorz (012) [1 4 + aas 2 - S
0

sin xdx
x(14x712a12/ps)

[ee]
C (a3 + azs) @12 2 K —Suﬁqx_]
+ ———pg—_———;é 1 +x712012/P3 ’ (51)
where
k2 )
: |

rod
12’ 0712
-5 + @12013G15 + al"aQSGNJ

1
T A+ ikaars [ 2 1+ ikyaars
(52)

-+ a13F ;3 + @psFos.

Thus we have found the correction of order kr,
to the factor (1+ikjyas5)~" in the wave function and
the correction to the wave function in the region
p1a ~ Tgs p3 > ry of order ry/ps;, which can be of
interest in a number of problems.

To find the corrections to the function ¥, (py),
we set

Tz (o2) = 2" (p2) + W (ea)-

To determine ¥4 (p,), it is necessary to sub-
stitute ¥4 (p3) from (44) in the third term on the
right-hand side of (31b), with account of the cor-
rection (39), and in the second and fourth terms,
¥(p,) and ¥{¥(p,) from (35b) and (35¢), re-

spectively.
The expression for ¥, (p,) resulting from such

substitutions has the form

Waer) = L2214 2 B, (B 4

alZ P2

RAC

f< > m[. 27 sinxe 7 (_1__1‘_211_1'_.2)(1)( A= m;
Z ? ’
2 X 14a;x .t * Pe Vpaars
0 P2 (53)

for ry < p, < 1/k, i.e., it contains the same con-
stant factor.
Similar results are obtained for py3 ~ ry, r
K py < 1/k and ry <K pyy, P13, Po3s < 1/k.
Therefore, as in the previous cases, it can be
proved that the matrix element of the reaction (14)
has the form

A, B, C) P (4, B)

= LYo (4, B', C) | ¥5P (A, B). (54)

with accuracy up to terms linear relative to «r.
The quantities Gy3, Gi3, Fy3, Fy3 entering into
the expression for L depend both on the energy
distribution' among the particles and on the reso-
nance amplitude of scattering a;,. If we introduce
the variables
u= Pf/QPqE, (55)

v = p3/2wE, w=p3/2u:E,

which determine the fraction of the entire kinetic
energy which is associated with the relative motion
of one of the particles (1, 2, and 3 respectively)
and the center of mass of the other two, then it
is easy to show that

Gys = 796G (B1, ©, a), Gag = 975G (B2, @, 0),

Fi3 =%F By, v, a), Fys =%3F (B, u, @), (56)

where

A2 = V2P~12E, *3 = VQHaEy Pr= Bas [ s = 12 / e,
By = (o3 /3 = Pr2/P1, @ = X12G12.

The functions F and G, after computation of
the part of the intervals entering into (48) and (49),
can be written in the form

z

F@3, u, a)= mx 1+a§ff_22) [Qal/l_—i?2 arccosz
—ir— Vil“-]i-a (smh“a + %)7—15[—%—_—‘1_2
Xl yTFa-Zwasi-y| 67
here zy, = V(1-u)B #Vu(1-8);
L
G@ w, 0= Z—Vﬁ(l———l’j—)(zz——zl)g § 1+;1t/y1—y
|
e RS P
—tan _1291,/2?(—1_1, (1_2;)—};) 1+10ytan-121/s(1—3)l
- x - —
i
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where
2 =VB(1—w) FVw(l—p),
po=VB(1—28) +2Vp(1—9),
8.(x) ={l x>0

-1 .
0x<0’ 0<tan™x < =n.

In spite of the crudeness of the expressions for
F and G, these functions can be tabulated without
great difficulty.

The differential cross section of the reaction
(14), as a function of the energy of the third par-
ticle (which interacts in nonresonant fashion) for
example, and of its angle of emission, which is de-
termined by the angle between the direction of the
momentum of the incident particles and the plane
in which the momenta of the particles produced lie,
has the form

d% (E, w, cosd) o 0 e . ,
e = [ My PIL RV o (T —w) (E— Eo)?,

L= (14 thyya;,)™ {1 - k?zroaxz /2 (1 4 ikypay,)

(59)

4 %12810]%3813G (B1, @, @) + %3055G (B2, w, a)]}'

+ xga13F (B1, v, @) + %3a95F (B, u, a),

where ¢ is the angle between p; and k,.
For given w and ¢,

v=w(l—B)+ B (Il —w)+ 2V w(l —w)p, (I —B,)cos 3,

u=w(l =) +B8: (I —w) — 2V w (1 — w) B, (1 —Bs) cos 9.

(60)
Thus the terms in the variables w and 4 in the
square brackets of (59) are responsible only for
the energy distribution, while the terms containing
F(By, v,a) and F(By, u, a) also involve the cor-
relation between the momenta p; and ky,.

4. ENERGY DISTRIBUTION p +p —p + A’ + K*,
p+tp—N+Z+K *

Let us consider the energy distribution in the
following reactions:

p+p—p+A°+ K, @
p+p—p-+E 4+ K, (I1a)
p-+p—p-+L+K°, (ITb)
p+p—n+Xt+ K7, (IIe)

and assume that the interactions (A, N) and
(£, N) are resonant.

In order that this be done, it is necessary to
take into account the spin and isotopic variables of
the particles generated. In the case of reaction (),
in view of the impossibility of charge exchange, the
presence of the isotopic spin is not important. Ac-
count of the usual spin leads only to the result that
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p and A’ can be produced both in the singlet and
in the triplet states. In this case a system of three
particles of small energy (p, A, K*) can depend
on the internal parity of the system (A, K*) rela-
tive to the proton, either in the state (0*, 1*), or
in the states. (07, 17).

However, inasmuch as two protons, as fermions,
cannot be found in the state 1*, then, depending on
the parity of (A, K*) in the final state, either only
the singlet state (p, A°) or the singlet plus the
triplet states are possible. In the first case, the
expression (59) is completely applicable for the
reaction (I) if by a4, one means the amplitude of
scattering of p on A’ in the singlet state — a,.
In the second case, since the states 0~ and 1~ do
not interfere, after averaging over the directions
of the momenta of the incident particles, the reac-
tion cross section has the form

d% (E, w, $) —
: (dwduzoscgs = Vw (1 —w)(E—Eo)

<fh |

2

L,

2 31
+ 2| m,

2! L,

1 (61)

where |M,|* and |M;|? are the squares of the
moduli of the matrix elements of creation in the
singlet and triplet states for zero energy. The
quantities |Ly|*> and |L,|> are expressions en-
tering into (59), in which, in place of a;;, there
are substituted respectively a, and a; — the
scattering amplitudes of (p, A°) in the singlet
and triplet states.

In the case of the reactions (IIa, b, c) the situ-
ation is entirely similar in the behavior of the spin
variables; however consideration of the isotopic
spin materially changes the final result. In this
case, the equations (31a, b, ¢) are more compli-
cated, inasmuch as for pj; ~ r, the wave function
@il (pil) of the particles i and ! is a superpo-
sition of functions with different isotopic spin Tjz
(Ya, % for N, Z; 0,1 for N and K; %, % for =
and K). We shall not repeat the calculations but
merely write down the final result which is almost
self-evident.

In place of the matrix element of the reactions
(Ila, b, c), which we denote by M,q,, M,,o, My,,,
we introduce the matrix elements My, Mjz/,, of
transitions into states with a total isotopic spin
T =1 and isotopic spinof N and Z, Ty =%
and ¥,:

Mooy = (1/ V3 Myy— (1 /V6) My, Miyo = (V3/2) Mo,

Moy = —V My, —(1/2V3) M, (62)
We can now write
Mr, = 2 (T1p| L| T3> M3 (63)
’ 12

Ty
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in place of Eq. (54).
To obtain <Tyy|L|T4{> from (52), it suffices
to note the following. The term

(1 =+ ikypayp) ™ [1 — khyroaia /2 (1 -+ ik10a10)]

depends only on the interaction of N, Z, for which
Ty, coes not change. Therefore, it gives a contri-
bution to <Ty|L|T{; > of the form

(1 + ikyar, ) [1 — Ehre®ar, /2 (1 + ikpar,,)]

X8 TpTyp =& Tus T1Tqoy

(64)

aT,, roT 12 are the scattering ar’nplitude and the
effective radius in the state with isotopic spin Tj,.
The term «3a43F (By, v, a) + k3ay3F (By, u, a), as
is easily seen from the derivation, is a contribution
from processes in which the interaction of particles
1 and 2 enter, and then the interaction of particles
1 and 3 or 2 and 3. The interaction of particles 1
and 3 or 2 and 3 changes the isotopic spin of the
particles 1 and 2 (Ty;). Therefore a;3 and a,3
are replaced by

(T2 6| Thoy = XS (T1a, T1a) b7,,S (Tag, Ta),

TI!
(Tialc|Tied = 28 (T1a, Tas) 1,5 (Tas, Thz), (65)
Tz:

where bTiz and cT,, are the scattering ampli-
tudes of (K, N) and (K, Z), respectively, in
states with a definite isotopic spin.

The coefficients S(Typ, Ty3) and S(Typ, Ta3)
are determined by the rules of addition of moments
and are simply connected with the Racah coeffi-
cients, for example

S(Ty2, Ty) = V(zvlvlz + 1) (2T, + HW(, 1/2, 1, 1/2? T2, T1s).

Simultaneously,
F@n,v,a)—F(@y,0, "2, )
12

The remaining terms correspond to the successive
interactions of particles 1 and 2, 1 and 3, or 2 and
3, and then again 1 and 2. Therefore, they are re-
placed by

'K]gllT" ,
Tklzam[x?’ (T12]6|T12> G (31, @, 11207.;2)

T % (Tralc] TG w, "12‘17’12)]-

By making use of all of the above, it is easy to
obtain the following relations between My or
Mg/, and their values at zero energy, Mg/z or

0
M/,

My, = {a, + % 5 @b+ 8) Fa (3, 3)
+x 5 Bt fa(3, 5)f M
+ o~ h (5. 3)

+ 22 oo b (5. 2)} 8, (66)

M'/2 = {Ob/, + %3 ';1;7 (bl + 2bo) fl <% ’ ‘3—)

b ) (3, S o,
—+ %3 {V?z(bl_bo) f1 (%’ %)
220, o (2, D) a,

where
*1247,,

f1(Tye, Tw) =F ([317 v, X12‘17;2 >+ mﬁa (@’u w, "mar'm),

fa(Tiz, Tha) = F (B2, t, 100, - )t
\ 12

%120
— 2 Te Gl8, w, w,a )
1+ lklza-r” ‘ le

(67)

Equations (62) and (66) allow us to find the cross
section of the three reactions (II) depending on the
ratio Mg/z / Mg/z and the amplitudes of pair inter-
actions.

In conclusion I wish to express my gratitude to
Academician L. D. Landau, K. A. Ter-Martirosyan,
I. T. Dyatlov, and A. A. Ansel’m for valuable dis-
cussions.

APPENDIX

Calculation of the contribution from &{; [Eq.
(49)]. To obtain (49) it is convenient first to inte-
grate over the modulus q in (46). In this case
we obtain

Ryt
1.+P3 1

X3t

k 11—F; 1

a3 — i
1-4-ikyoa !
-iR12a12 ,‘Zp3

D5 (p) =

z
X{ 22uyg / p1s + 2pzxpag/ my — p* — 2p3E 4 s

Rt 1

P8 201 (E — ) 2p18) + dypx? / m]

22 “}

) 1

) 2 2 2 o 2J
2p13) + Wippx% ) my - prepx [ my)? — 2z

(@)

M=
[ (V2P12 (E—p?
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where the relation pyous/m? + 1 = pg/uy3 = py /b1
is employed.

The contribution from &{;(p) in ¥3(p3) has
the form

i @, (p)
sin pps 3 2
4= S pps 1+ ikpas pap-. (®)

For p/k — «,

q);3 (P) _ 12013 { 1 R
1+ikpms 1+ ikieme | p (1 + pri2ai2)

—_1
p1z ( dx !
o 1/}*13 S 4m?

=1 Vi— Paspagx® [ m?

_ iR12a12 <i>
2n%p% (1 4 pY12012) +0 P } . (c)
Therefore, if we write down
@, (p) Qa0 { (o
13 _ 12013
1+ ka1 T 1+ ikar Gs () + 272p (1 4+ pY12012)

_ ik1a12 }
2n2p% (1 4+ pY12a12)° °

C= %:tan'il/ 2@

1

then Gy3(p) ~ 1/p* for p_/K — = and, consequently,

one can set p3 =0 in the term containing Gy;, in
the integral (b) for p; < 1/k. Substituting (a) in

(b) and taking into account this observation, we ob-
tain the result given in the text [Eq. (49)].
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