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of corresponding constants of the motion. For ex
ample, for a system with central symmetry there 
is conservation of the components of the angular 
momentum M, which generate the rotation group. 
Gauge transformations with a constant phase are 
generated by the charge operator Q. Such con
stants of the motion do not exist, however, for the 
general group of gauge transformations, 

(1) 

We shall show that by the introduction of additional 
variables into the Hamiltonian one can construct an 
infinite set of constants of the motion, which gener
ate the transformations (1), and thus can include 
the',gauge transformations in the general scheme 
of canonical transformations. 

Let us write the Hamiltonian of quantum electro
dynamics in the form 

H = ~ E p (aJoapa + bJobpa) + 2; w (c~ C1k-+ c"t C2k- c"t,c4k 
p, 0 k 

4 

-c1;,c3k) + 2;~ ,1e2 ku(ei.j"t) + ci:k (e1·jk)); (2) 
k A=I f w 

where a and b are the operators of the electron
positron field, and c are the operators of the elec
tromagnetic field; jk are the Fourier components 
of the current vector. The integral in Eq. (3) is 
taken over unit volume. The polarization vectors 
eA. are chosen in the following way: e1 and e2 are 
unit space vectors perpendicular to k, and 

e3 =(I, kjw) j V2, e4 = (1, -k/w)JV2. 

For the photons one introduces an indefinite 
metric. In accordance with this, the operators c 
satisfy the commutation relations 

In terms of the operators (5) the gauge transfor
mations (1) can be expressed in the form of a uni
tary operator 

Ut. = exp {i ~ (AkRk + AtRt)}· 
where A.k are arbitrary numbers. The function 
A ( x) for the transformation (6) is 

A (x) = ~~ (AktXk exp {i (kx- wt)} 
k 2w ' 

+At tXt exp {- i (kx-wt)}), 

and in virtue of the relations (4) A (x) can be 
regarded as a numerical function. 

(6) 

In our representation the supplementary condi
tion ( 8Ap, /8xp,) 4> = 0 can be written in the form 

(c4k - epk/2w'l•) <l> = 0, (c;ik - ept j2w'i,) <l> = 0 0 (7) 

Comparing Eqs. (7) and (5), we see that for the 
allowed states the quantities Rk and R k are 
equal to zero: 

Rk <l> = Rt <l> = Oo (8) 

Obviously the conditions (8) single out the Max
wellian electrodynamics from among all the theo
ries described by the Hamiltonian (2). 

The variables a and {3 are of the nature of 
two additional components of the electromagnetic 
field. Since these components do not interact with 
charges, this scheme is entirely equivalent to the 
usual electrodynamics. 

Translated by W. H. Furry 
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THE RELATIVISTIC PHOTOEFFECT IN 
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(the remaining commutation relations are the usual 
ones). We now introduce "supplementary" variables 
ak and f3k, which satisfy the commutation relations M. GA VRILA 

and commute with all the other quantities, and add 
to the Hamiltonian (2) the quantity 

H - \,l ( +g ' Q+ ) ct/3 - - LJ (t) 'Y.,, I k T Pk IX< 0 

" 
It is easy to verify that the "total" Hamiltonian 
H + Haf3 commutes with the quantities 

(5) 
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THE problem of a theory of the nonrelativistic 
photoeffect in the L shell was solved a long time 
ago. 1•2 The relativistic aspects of this problem, 
however, have only been remarked upon. In view 
of the successful development of {3 -ray spectrom-
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LufaLru 0.500 

etry in recent years it becomes now desirable to 
make a more careful analysis of the contribution 

0.9!J 

0.72 

0.535 

of the L shell to the photoelectric absorption at 
high energies.3•4 As it is impossible to obtain ex
act analytic expressions for the relativistic cross 
sections, we attempt to find their approximate form 
for the light elements.* Thus we determine the 
cross sections for the LI subshell which are ac
curate up to and including the first order of aZ; 
in the case of the Ln and Lni subshells we only 
obtained approximations of zeroth order in a Z. 

As usual, the calculation is based on the central 
Coulomb field approximation for the different elec
trons, with Z changed to Zs = Z -4.5 (see ref
erence 1, §69 a). The spinor corresponding to the 
final state of the electron is treated in the Born 
approximation. The integration in the matrix ele
ments is performed in momentum space. The cal
culations are analogous to those in the case of the 
K shell, described earlier by the author.5 To find 
the differential cross section for one of the L sub
shells, we must sum the contributions from all 
electrons of this subshell, taking into account the 
two possible spin orientations in the final state. 
Mathematically this involves very laborious cal
culations of traces. 

As a result we obtain for the differential cross 
sections the expressions 

d::~L 1 = + (daK)s, 

daLII = :~ }.ga,sl~(I2-J)'/, •(4(1- if" 

X {f (31+ 1)W4 - d-1(912+30"]'-7)8-3 

+-i 12 (13 + 612 + 11,.- 2) s-2 

(1) 

- ~6 13 (r-l)(r-J-7)W1 +sin2 0cos2 tp(l--1-l)r- 1 [2H-" 

-2r s-4+ 1'2 (3r+1) (1--1) e-a]}dw, (2) 

daLill = ;2 },~ 0(,8 z; (r2- I )'f.,.(4 (I- q-s { -1- (31'- I)..-.-( 

+ +r (3r2- I) W3 + + 12 (1:'- 2r2 + 21 + 1) w2 

(3) 

I 
j I 

0.91 0.79 0.54 0.07 0 

O.fi1 0.38 O.!G 0.007 0 

0.51,G 0.5S8 0.531 0.36G 0.:!81 

where ( dox:)s is given by formula (92) of refer
ence 5, with Z replaced by Zs, the angles () and 
cp are determined in reference 5, and. 

),1 = njmc. 

The corresponding total cross sections are 

(4) 

- 1 6 7 (T2 ~ 1)'1• 
aLII -2560(, Z,rpu (j~1)5 

y{S13 -512+21.1-16- 1 2(~:~~·~1n ["]' -L (1' 2 - l)'f,]}, 

(5) 

(6) 

where OK is given by formula (98) of reference 5. 
The formulas for the cross sections are valid for 
light nuclei, since we must fulfill the condition 
(7raZsiJ3) 2 « 1 for the LI subshell and the con
dition 1raZs 1!3 « 1 for the Lu and Lm sub
shells. 

In the extreme relativistic limit j3 - 1 we 
easily find that the total cross sections (4) to (6) 
are proportional to mc21hv. In the limiting case 
of small energies we can show by neglecting terms 
of order j32 that the angular distributions given by 
formulas (1) to (3) go over into the corresponding 
nonrelativistic expressions of Schur (see refer
ence 1, § 7 2 j3 ) • The value of the ratio 
( daLn I daLm )nr = 112 is equal to the ratio of 

the number of electrons in these subshells. 
Formulas (4) to (6) predict a slower decrease 

of the total cross sections with increasing photon 
energy than the nonrelativistic formulas. In the 
case of the light elements this can be seen from 
the table, in which we list the ratios of the rela
tivistic (a) over the nonrelativistic ( unr) cross 
sections (to lowest order in aZs). There we also 
give the values of the relativistic ratio aLn I aLnr 

It can be assumed that the error associated with 
the ratios given in the table is of order ( aZs )2. 

In conclusion the author expresses his grati-
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tude to Acad. S. Titeica for his interest in this 
work and to Prof. R. H. Pratt for clarifying com
ments on a number of questions touched upon in 
this paper. 

*Recently Pratt calculated the total cross section up to 
terms of order aZ in the extreme relativistic case. 
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