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A number of general relations associated with the gauge invariance of quantum electro
dynamics are obtained. 

INTRODUCTION 

AS is well known, the system of equations for the 
Green's functions of quantum statistics1•2 differs 
both in form and in content from the analogous sys
tern of equations for the Green's functions of ordi
nary field theory. 

However, .as will be shown below, a number of 
general relations associated with the gauge invari
ance of quantum electrodynamics hold not only in 
ordinary quantum electrodynamics3 but also in 
statistical quantum electrodynamics. 

It is not difficult to convince oneself of the cor
rectness of the relations we shall obtain if one 
uses perturbation theory and analyzes the simplest 
Feynman diagrams for quantum statistics, but in 
this paper a more complete and rigorous proof of 
these relations is given by means of the exact equa
tions for the Green's functions of quantum statistics. 

1. RELATIONS OF THE WARD TYPE FOR QUAN
TUM STATISTICS 

By using results obtained earlier1 we can get a 
system of equations for the Green's functions in the 
presence of a source of the photon field; in the mo
mentum representation this system can be written 
in the form (the notation is the same as in refer
ence 1) 

G-1 (p, p') = [- ilvPv --14:.1. + m] o (p- p') 

- iEir.c < Ar.c (p- p')) + r, (p, p'), 

[k2o (k- k') o"P- Ilr.cp (k, k')] Dpv (k, k') 

= o (k- k') (or.cv - kr.ckv I k 2), 

, e2 {'l \ IT"v(kk)= (Zn)"[3 Sp L....l) lr.cG(k+s,s1)fv(s1 , s~, k') 

> G (s2, s) d3s1d3s2d3s}. 

r, (p, p') = (:2;;.~ ~ ~ lr.cG (p + s, s1) fv (si> p', s~) 

(1) 

(2) 

(3) 

(4) 

QG-1 (p, p') 
f," (p, p'' k) = - o ( ieAf.t (k)) 

= '"0 (p- p' -k)- (J~ (p, p') (5) 
o(ie Ar.c (k)) 

In Eqs. (3) and (4) the summations are over all 
the fourth components of the momenta; these com
ponents are, respectively, 2rn/{3 for photons and 
(2n + 1) rr/{3 for fermions.* In Eq. (2) the term 
kJ..Lkv /k2 must be understood in the sense of the 
principal value for the analytic continuation. We 
note that it is often more convenient to work with 
a different gauge for the potential A; in particu
lar, we can drop this term. 

o (k- k') = o (k -k') o(k,-k·1, 
4 

h J1 for k 4 = k4. w ere o . = 
(k,-k4l to for k4 ~ k~ 

Using Eqs. (1)- (5) and expanding all quantities 
in series by perturbation theory, we can convince 
ourselves that the following relation holds: 

a-1 (P-I k, p')- a-1 (p, p'- k) 

(6) 

*In the limiting case of zero temperature all the sums over 
the fourth components go over into integrals. (For {3 -> oo we get 

~ ~ ... 2; S dp •. ) In particular, if we further let IL-> 0, we get 

from (1)-(5) a system of equations equivalent to ordinary quan
tum electrodynamics, with the following advantages: a) the mo
mentum space has a Euclidean metric, and therefore calculation 
is considerably simpler than in the usual pseudo-Euclidean 
space; b) in this system of equations Im 11 = Im l = Im [' = 0, 
and thus the number of equations is only half as large as in 
ordinary quantum electrodynamics. The transition to the quantum 
theory in the usual representation is accomplished by analytic 
continuation in the fourth component of the momentum (cf. refer
ence 1), and then all quantities become complex (there is an 
analogous situation in classical theory, where the dielectric 
constant for imaginary frequencies becomes a real quantity); 
c) our Green's functions in the Euclidean parameters do not 
have poles, and therefore division by o-· and G-1 is unique; 
the poles arise in the analytic continuation of these quantities. 
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We shall show below that the exact system (1) - (5) 

(without resort to perturbation theory) also has the 
relation (6) as one of its consequences. 

In fact, according to the left member of (6) we 
have 

a-1 (p ,_ k, p')- a-1 (p, p'- k) = i1pk/) (P + k- p') 

e"i '\l\ [ . 'OG-t (st. p') + (2tt)3~ .L.J} 1/J- G (pi k + s, 81 ) oe<Av (s2)) 

G ( --'-· ) oG-t(st. p'- k)] D ( ) dada d3 (7) - P , s, S1 oe <Av (s,)) v(J. s2 , s s s1 s2 • 

On the other hand, we get from (1)- (5) for the right 
member of Eq. (6) 

oa-t (p, p') . , e'i 
k< oe <AP (k)) = -I"( PkpP; (p + k- P ) - (21t)3~ 

v '\1 \ [k oG (p + s, s1l oa-t (st. p') 
'' .L.J ~ liJ. P oe(AP (k)) oe(Av (s2)) 

(i2Q-t (st. p') ] 
- G (p + s, 81 ) kp oe <Ap (k)> oe <Av (s.)) 

;< Dv!J- (s2 , s) d3sd3s1d'1s2 

"i \ oa-t (st. p') + (:~)3~ ~ .\ l/J-G (p ·r- s, sl) oe <Av (s2l> 

(S) 

According to (6), the left members of (7) and (S) 
are equal. We shall show that indeed the right mem
bers of (7) and (S) are identically equal. 

Consider the right member of (S). Using the law 
of the conservation of the four-dimensional current, 
we have (see Sec. 2) 

oDv!J- (st. s) 

k/J- oe <A/J- (k')> 

According to Eq. (6) 

= 0. 

oG-t (s1 + k, p') 

oe <Av (s,) > 
oG-1 (St. p'- k) 

oe <Av (s,)) (6a) 

After substitution of (6) and (6a) in the right member 
of (S), we get the following expression: 

... r'OG-t (st + k, p') oG-t (s2, p'- k)JD ( ) d3 d3 d'l 
/. ·- <,e <Av (s,)) - oe <Av (s2)) v:< s2, s sl s2 s. 

(Sa) 

After the reduction of similar terms in (Sa) we 
find· that the right member of (Sa) agrees identi
cally with the right member of (7). Thus we have 

shown that the exact equations for the Green's func
tions in statistical quantum electrodynamics have 
the relation (6) as one of their consequences. 

The relation (6) is equivalent to an infinite series 
of relations, which are obtained from (6) by succes
sive differentiations with respect to <A>, after 
which one sets <A>= 0. In particular, we get re
lations of the type of Ward's identity applicable to 
quantum statistics: 

a-1 (p)- a-1 (p-:- k) = ikprp (p, p- k, k), 

ao-l(pJ . I' r ( o o) -a- = -I Ill v p, p- v, ., , 
Pv Sv----+0 

(9) 

where ov is a vector which has only its v -th com
ponent different from zero (see footnote t). An 
analysis of the general proof of the relation (6) en
ables us, in particular, to indicate for each Feyn
man diagram of G -t [more exactly, for ~ ( p)] a 
set of diagrams of the vertex part r that assure 
the fulfillment of the relations (9). This is done 
in the figu.re, where the diagrams (up to e4 ) are 
divided into groups a, b, c, within each of which 
the relations (9) hold. 

... ~-... " ' 

a 

,.--- ..... 
;' ..,.-- ...... ' 

b 

,.--:;<~- .... 

' I ' ' 

I I I 

AI +_A',+A' 
I •( 

/\ I'., 
/ ' 

c 

Using the fact that the chemical potential J.L ap
pears in a-t (p) in combination with ie<A4 (O)>, 
we get 

ao-t (p) ao-1 (p) , 
rJie(A 4(0)) = ~ = -l4 (p, p, 0), (10) 

where r 4 ( p, p, 0) must be understood as the 
limit of r 4 (p, p- k, k) when k4 = 0 and k-- 0. 

2. SOME RELATIONS FOR THE POLARIZATION 
OPERATOR 

a) It is not hard to convince oneself that all the 
odd derivatives of the polarization operator with 
respect to <A> are equal to zero; this means 
that closed loops with an odd number of fermion 
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lines are equal to zero (the analog of Furry's theo
rem for statistics). This can be seen easily if one 
takes the current in charge-symmetric form (the 
proof is similar to that carried out in Appendix II 
of reference 4). 

b) The four-dimensional divergence of the polari
zation tensor TIJ..tv is equal to zero. This holds also 
when there is an external source of the photon field, 
so that <A> ,c 0. In fact, according to (3) and (6), 
we have 

kJ1f.lv (p, k) = (2~;3 ~ Sp {.2} ~ r!J.G (p + s, s1) [G-1(si,s2- k) 

- a-1 (s1 + k, s 2)] G (s 2 , s) d3sd3s1d3s2} = 0. (11) 

Differentiating Eq. (11) with respect to <A> and 
then setting <A>= 0, we get an infinite sequence 
of relations equivalent to the operator conservation 
law for the total charge. 

In ordinary quantum electrodynamics it follows 
from Eq. (11) with <A>= 0 that the tensor TIJ..tv 
has the form 

(12) 

In statistics the situation is different. In this case 
ITJ..tv (k) depends on two vectors: on the argument 
vector k and on the velocity vector u of the me
dium. Therefore it follows from Eq. (11) that in 
the rest system of the medium [ in this system the 
equations (1) - (5) hold 1 the tensor TIJ..tv has the 
form 

( k[lkY ) 2 kflkV k! 
rrf.lY = k2- O[.lv A (k 2 ' k4) + f144 ---.z2 F' 

ITf.l4 = f14f.l = - TI44kl'-k4; k2 , where v, fL = 1, 2, 3. (13) 

In a c.oordinate system in which the medium 
moves with velocity u the tensor TIJ..tv has the fol-

lowing general formt 

(14) 

where v, J..t = 1, 2, 3, 4. 
In conclusion we remark that by the method of 

reference 3 one can find in general form the be
havior of all the Green's functions under a gauge 
transformation. 
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tThe fact that in quantum statistics all quantities have the 
additional dependence on the timelike vector u of the velocity 
of the medium has the consequence that for k -> 0 we in general 
get different results depending on the way k goes to zero 
(lkl 2 > k! or lkl 2 < k!). For example, from the law of the con
servation of the total charge of the system it follows that 
I144 (k4 , 0) = 0, whereas by means of the relation (10) one,can 
show that 

lim IT (0, k) = TI (0, O):=e2(a I at'-) {Sp ·14G (xx)} =- ezap 1 at'-
~ « « ' 

where p is the charge density in the Uv space. We have thus 
also shown that Eq. (3.11) of reference 1 for the Debye radius 
remains valid when all quantum and relativistic corrections are 
taken into account. 


