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A formula has been obtained for calculating t."'Ie reduced second moment of a paramagnetic 
resonance line and the low-frequency paramagnetic absorption, taking into account the elec
tric field within the crystal. A formula is given for calculating the fine structure constants 
of nuclear and electronic paramagnetic absorption from the experimental value of the second 
moment of the absorption curve. A study is made of the way in which the spin-spin paramag
netic relaxation time depends on the interaction of the electron magnetic moments with the 
internal electric field and the nuclear magnetic moments. As an example, the order of mag
nitude of the spin-spin relaxation time has been estimated for diamagnetic crystals contain
ing Mn++ ions as an impurity. 

1. INTRODUCTION 

THE well-known formulas of Van Vleck (refer
ence 1, Eq. 11) and Broer (reference 2, Eq. 12) 
for evaluating the reduced second moment < ( Llv )2 > 
of a paramagnetic resonance line f ( v), and the 
reduced second moment < v2 > of a low-frequency 
paramagnetic absorption line cp ( v), do not take 
into account the fine and hyperfine structure of the 
absorption line, and cannot be used to study the in
ternal interactions in many paramagnetic crystals 
and liquids. After the appearance of Van Vleck's 
paper, 1 a number of authors derived formulas for 
calculating < ( Llv )2 >, taking into account the in
ternal electric field E, but limiting themselves to 
particular cases. They considered ions3 with elec
tron spins of S = 1, the central line f ( v) for 
ions4 with half-integral spins S, and ions 5 with 
anisotropic g -factors and with S = !. As for the 
cp ( v) lines, Kopvillem 6 in calculating < v2 > con
sidered the anisotropy of the g -factor and the ex
change interaction, and also the interaction J<bfs 
between the nucleus inside the ion and the magnetic 
field created at the location of the nucleus by the 
uncompensated electrons in the ion. 

In the present paper a formula is obtained for 
calculating the reduced second moment of an ab
sorption line for a quantum of constant radio
frequency, for paramagnetic centers which are 
magnetically equivalent and have an arbitrary 
spin S, in the following two cases: 

a) The field E splits the energy spectrum of 
the spin system of the paramagnetic material into 
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a series of discrete quasi-continuous bands whose 
widths depend on the magnetic dipole interaction 
Jed and on the exchange interactions JCex among 
the paramagnetic centers. In this case the f ( v) 
line splits up into a series of fine-structure com
ponents fM,M-1 ( v) corresponding to the magnetic 
dipole transitions I S, M > - I S, M -1 > between 
the states IS, M> and IS, M -1 > of the para
magnetic centers. ( M is the magnetic quantum 
number. ) It should be noted that it is possible to 
classify the components of the line f ( v) accord
ing to the number M if the static magnetic field 
H0 is considerably stronger than the field E, or 
if the field H0 is directed along an axis of symme
try of the field E. We shall evaluate the reduced 
second moment <(flv) 2 >M,M-1 for every com
ponent fM,M-1 ( v). 

b) The energy spectrum of the spin system con
sists of a single quasi -continuous band whose width 
depends on the interactions Jed, 3Cex• JChfs• and 
the interaction JCE of the paramagnetic centers 
with the field E. The condition that the spectrum 
of the spin system be quasi-continuous is fre
quently fulfilled in materials such as dielectric 
crystals and solutions containing ions of the iron 
group or the rare earths, with electronic configura
tions corresponding to 3d5 6s or 4f1 8s. There 
will be a cp ( v) line under the condition2 that the 
frequency v of the alternating magnetic field Ht 
is of the order of magnitude of the reciprocal of 
the paramagnetic spin-spin relaxation time Tss• 
and its shape will portray the distribution function 
for the transition frequencies of the paramagnetic 
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centers between the levels of the quasi -continuous 
spectrum of the spin system, arising under the in
fluence of Jed, :feex• JChfs• and JCE. We shall 
calculate < v2 > for a cp ( v) line, taking into 
account all of the interactions enumerated above. 

In both of the cases (a) and (b) we shall con
sider only electron paramagnetic absorption lines. 
Nevertheless, all the results we obtain may be ap
plied unchanged to the case of nuclear magnetic 
resonance. For this purpose the operator JCE 
would describe the quadrupole and higher-order 
interactions between atomic nuclei with spins 
I > ! and the gradient of the internal electric 
field E. We shall assume throughout that the 
spin-lattice interaction is very much smaller than 
the interaction JC1 within the spin system, and that 
these spin-spin interactions are the only ones which 
determine the shape of the paramagnetic absorption 
line. 

2. REDUCED SECOND MOMENT FOR THE FINE
STRUCTURE COMPONENTS OF A PARAMAG
NETIC RESONANCE LINE 

Let a static magnetic field H0 be directed along 
the z axis, which coincides with one of the princi
pal axes of the g -tensor of the paramagnetic ions, 
and let Ht be parallel to x. We write the Hamil
tonian of the spin system in the form 

::Je = ::feo+ ::Je1, ::leo= ::lez+ ::feE' ::Je1 = ~~ p~YSi S~, (1) 
i>i a,y 

where JC1 is the perturbation, :tCz is the Zeeman 
energy operator of the paramagnetic ions in the 
field H0, JCE is the St~rk energy operator of the 
ions in the field E, P}.h is a second order tensor 
describing the internal interactions in the paramag
netic material, i and j are indices distinguishing 
the ions, and a and y are indices denoting the 
coordinate axes. In our case 

::Je1 =::Jed+ ::feex, P~y= gagy~2 (r";/- 3r;/JJijii)- n~/ii, 
(2) 

where {3 is the Bohr magneton, ga is the spec
troscopic splitting factor along the axis a, qj is 
the radius vector connecting the i -th and j -th ions, 
aij is ~~e projection of the vector qj on the a 
axis, J 1J is tqE? exchange integral1 for the ions i 
and j, and n~y is a coefficient characterizing 
the anisotropy of the exchange interaction, due to 
the influence of the field E. 

To calculate < ( .6-v )2 > we shall use the for
mula1 

.v . 

((f.v)2> =- h-2 Sp{[::Jelo ::fetFHSp (::Je~W 1 ' ::Jet= L s~. (3) 
i=l 

where h is Planck's constant, N is the number 
of paramagnetic ions in the sample, JC1 is the 
portion of the operator JC1 which commutes with 
JC0, and the notation [, ] denotes the formation of 
the commutator. The operator :fet describes the 
effect of the field Ht on the spin system of the 
paramagnetic material, and its component operators 
s~ are obtained from s~ by removing all matrix 
elements which do not correspond to the frequency 
of the field Ht. In our case the field Ht causes 
transitions between the IS, M>" and IS, M -1 > 
states only, and consequently the only non-null ma
trix elements of the operator S~ are of the form 
<S,MIS~IS,M-1> and <S,M-1IS~IS,M>. 
Using (1) to (3), we obtain 

((f.v)2)M,M-l = {h2 (2S + 1)}-1 ~ I QJ(P1x + P~y) 2 
i(' j) 

+ Q2Pii2+ Q3 pii (Pii + pii) _t- Q1 (Pii _ pii )2! 
ZZ ZZ XX ljlj 1 XY ljX ' 

Q1=~{2(S+M)2(S-M+ 1)2+(S+M+ 1) 2(S-M)2 

+ (S + M- 1)2 (S- M + 2) 2}, 

Q2= 2S 1~ 1 {(2S + 1)2- 1}, 

·1 
Q3=-z-(S+M)(S-M+ 1). (4) 

If the spin system of the paramagnetic material 
contains ions i and k which are not equivalent, 
and paramagnetic resonance occurs in ions of the 
type k having a spin S', then the corresponding 
reduced second moment < ( .6-v )2 > S' can be cal
culated with the aid of a formula obtained from (4) 
by setting Q1 = Q2 = 0 and substituting S'k for 
sj and k for j. If the paramagnetic centers all 
have the same spin, but are acted on by different 
intra-crystalline electric fields E, then the cor
responding reduced second moment < ( .6-v )2 > 0 

for the fine structure component f1; 2, _1; 2 ( v ) is 
calculated from formula (14) of reference 4. It 
should be noted that the quantities < (.6-v )2 > M,M-t• 
< (.6.v)2>s. and < (.6.v) 2 > 0 are additive. 

3. REDUCED SECOND MOMENT FOR LOW
FREQUENCY PARAMAGNETIC ABSORPTION 
LINES 

The Hamiltonian of the spin system is of the 
form 

::;e = ::;e lJ 

A' N 

::Je1 = ~ h P~YS~S~ + h z; (D~S~+ E~S~4+ A~Si fi;J. (5) 
i>j a.,y i=l a 

where (Da. Ea) and Aa are the elements of ten
sors characterizing the interactions JCE and JChfs 
respectively (see reference 7 ) . In the present 
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case si = si and the operator 3Ct has the form X X' 

.1t't=~~g;IXs~. g:IX=giXcos(oc,t), {6) 
i,a. 

where ( a, t) is the angle between the direction of 
the field Ht and the a axis. Using (3) and the 
expressions (5) and (6) we obtain 

(v2) = {hg}-2((v2)d+ex + (v2)E+ (v2\fs), (7) 

where subscripts are added in order to distinguish 
the brackets of the corresponding interactions. The 
values of the second moments on the right hand side 
of (7) are given by the following expressions: 

(v2)d+ex= L ~~ (ee<J,rrf!y•"gi.gi"'P18Pif8+ ey.vi!e<J,sg{.g~"'P~~P~~), 
«+n ~) 

(v2)hfs= R ~,eyl.ve&<J,vg:~.g:"'AyaAsa, (9) 

<v2) = ~ai2{e2 (v Di2+v £'2+v Di£i) E ..:::.J "'II> afjy I IX 2 IX 3 IX a 

(10) 

where ea{3y is the unit antisymmetric tensor 
(with exyz taken to be unity), and all the indices 
a, {3, y, (}, ... are to be summed over the range 
x, y, z. In formula (9) the index (} is introduced 
to denote the principal axes of the tensor A. The 
coefficients vy are calculated from the formulas 

VI= b Sp {[S .. , S.,.J;J =-} s (S + 1)-{' 

V2= b Sp {[S~. [Sa, Sy]+l;J =~sa (So+ 1)3 

268 2 . 2 112 9 - - S (S ~"~ 1) -1 - S (S -f- 1) - --
105 ' 35 7 ' 

Va=bSp{[S12 ,Sy]+[S~, [Sa, Sy]+)+} 

= ~S2 (S + 1)2- ~S (S-+- 1) + __!i_ 35 35 • 7 • 

V4= bSp {[S!, [Sa, Sy]+l+ [S~, [Sa, Sy]+l+} = ~S3 (S + 1)3 

-fS2 (S+ 1) 2-iS(S+ I)+ f. 
b = {~ S (S + 1)(2S + l)r. (11) 

where a ~ y; a, y = x, y, z; and the symbol [, ]+ 
denotes the formation of the anticommutator. In 
Eqs. (8) to (10) it is assumed that the mean values 
derived for the coefficients of the Hamiltonian (5) 
are determined by the formula 

<A~A~) = AaAA, (12) 

If the coefficients Ah have an arbitrary distribu
tion lfi ( i ) , then 

<A~AZ> = (N aNr,fi ~ ~ (i) ~ (k) A~ A~. (13) 
i,k 

In the case {13), the fine and hyperfine structure 
of the cp ( v) line cannot be resolved by magnetic 
dilution of the sample, and the coefficients of the 
Hamiltonian (5) can be found only by comparing 
the experimental and theoretical moments of the 
cp ( v ) line. It should be mentioned that the coeffi
cients of the Hamiltonian (5) can have different 
values for magnetically dilute and magnetically 
concentrated samples. The formulas (8) to (10) 
which we have obtained can be used to study this 
question. 

In the case of paramagnetic solutions or powders, 
where the field Ht occurs at arbitrary angles to 
the x, y, z axes fixed to the molecules or micro
crystals, the coefficients gtagt/3 in expressions 
(8) to (10) should be replaced by their mean values, 
found from the formula 

(14) 

where 6af3 is the Kronecker symbol. 

4. REDUCED SECOND MOMENT OF THE cp(v) 
LINE FOR Zn (HCOOh · 2H20 WITH Mn++ 

IMPURITY 

As an example of the use of formulas {9) and 
(10) let us take the case of low-frequency para
magnetic absorption occurring at a Mn + + ion in 
a crystal of Zn (HCOOh • 2H20. From the experi
ments of Hadders et al. 8 it is known that for Mn++ 
ions the width Llvv2 of the cp ( v) line at half
amplitude is determined by the interactions within 
the spin system. For small concentrations of Mn++ 
ions the order of magnitude of < v2 > is deter
mined by the interactions JCE and JChfs. From 
(7), (9), and (10) we obtain 

(v2) = (hgf2((v2).E+ (v2\,r9 ) = (hgf2{g~x[V1 (Dy- Dz) 2 

+ v2 (E! + £;) + v3 (DyEy+ DzEz- DyEz- DzEy} 

+ v4 (-2EyEz) 

-+ R (A;a,-l- AZa,-+ A!a,-+ A;a,-+ A;a,+ A;a,)l 

-+ f[txgty [- R (Axa,Aya,-l- Axa,Aya,-+ Axa,Aya,)]-+ Q}, 
(15) 

where Q contains terms of the type gfy, g£z• 
gtzgtx. etc., obtained by permutations of the sub
script indices given above. 

The tensor elements occurring in (15) can be 
found by comparing the Hamiltonian (5) with the 
spin Hamiltonian JCs for an isolated Mn++ ion, 
as given by Bowers and Owen:7 

.1t's= g~ (HzSz+ HxSx+ H uSy)+ i (S~+ S~-+ S!) 

-+ D(s;- ~)+E(S;- S!) +A (Szlz+ Sxlx+ Syly). {16) 
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From (5) and (16) it follows that Ex= Ey = Ez 
= a/6; Dz = D, Dx = E, Dy =- E; Axx = Ayy 
= Azz =A; and gx = gy = gz =g. 

Making these substitutions, we obtain 

(•1 2) = h- 2 {fs a 2 (v 2- v4) + 2NR + v1 [cos2 (t, x)(E + D) 2 

--i- cos~ (t, y)(E- D) 2+ cos2 (t, z)(£ + D) 2] }· (17) 

Substituting into (17) the numerical values D 
= 0.0485 cm- 1; g = 1.999; E = 0.011 cm- 1; a 
= 0.0009 cm- 1; A= 0.0091 cm- 1; v1 = 6.4, v2 

=341.7, v4 =.259.4, and R=2.917,weobtain 

(v 2) ·--~ {43.72+ 2C35[cos2 (t, x) 

+cos2 (t,z)]-i 8C'8.2cos2 (t,y)}·l016 sec- 2 (18) 

Using Broer's formula, 2 Tss = (7r/2 <v2>)112, we 
find from (18) that Tssx = Tssz = 2.8 x 10-10sec 
and Tssy = 4.3 x 10-10 sec, where the subscripts 
x, y, and z are introduced to denote the direction 
of the field Ht which perturbs the spin system. 

5. DISCUSSION OF RESULTS 

1. Formula (4) is the generalization of a number 
of known results. Let JC1 =Jed + JCex; then from 
(4), if (a) S =% and the temperature T = co, we 
have formulas (2) to (4) from a paper5 by the author; 
(b) adding the condition that the g -factor be iso
tropic, gaa = const, we get Eq. (11) of Van Vleck's 
paper1 for S = %; (c) if S = 1 and gaa = constant 
for the fine structure components fv2, _1; 2 ( v), we 
obtain equation (8) of Kambe and Ollom.4 

2. Note the following peculiarities of Eq. (4): 
a) The quantity < ( .6.v )2 > S• characterizing 

the local field at the position of the paramagnetic 
center i, depends on S and is uniform for all the 
fine-structure components. 

b) In the presence of strong intracrystalline 
electric fields the exchange interaction makes a 
contribution to < ( .6.v )2 > M,M _1_ and, generally 
speaking, there are no paramagnetic resonance 
lines. This is due to the fact that the energy of 
the paramagnetic centers depends on the orienta
tion of the magnetic moments of the centers with 
respect to the symmetry axes of the field E. 

c) Fine-structure components due to the transi
tions IS, M>- IS, M -1> or IS, 1-M> 
- IS, -M> have the same reduced second mo
ment. 

d) The quantity 4(Q1 +Q2 -Q3)/9(2S+l) =W, 
corresponding to the factor 1/ 3 S ( S + 1) in Van 
Vleck's formula, 1 is greatest for the transition 
I S , Y2 > - I S, -% > and drops off monotonic
ally as the quantity I M I increases. 

e) The ratio 1% : 1 : %. relating the reduced 
second moment < ( .6.v )2 > ~ which includes the 
contributions from all the satellite lines, to 

<(.6.v)2 >M,M-1 and <(.6.v)2>s in the case 
E = 0 (see reference 9), is replaced in our case 
by the formula 

((L\v)2)E: ((L\v)2)M, M-1: ((L\v)2)s 

= 1%S(S+ l):W:[4Q2 /9(2S+ I)] 

which depends on M as well as on S. 
3. Let us now return to formulas (8) to (10). 

When S = %. (8) and (9) become identical with 
(10) and (11) of the author's work in reference 6. 
If Ht II x and ga = constant, (8) is identical with 
Broer's formula (see reference 2). If all the co
efficients in the Hamiltonian (5) are zero except 
Ez and Dz, then (10) agrees with Bersohn's for
mula (7) (reference 10). 

4. The spin-spin paramagnetic relaxation time 
which we have calculated for a manganese ion 
agrees in order of magnitude with the results of 
experiments by Hadders et al.8 As to the aniso
tropy of the time Tss. experimental data are 
almost entirely lacking. It should be noted that 
we previously predicted that the time Tss should 
depend on the interaction of the electron spins of 
the paramagnetic ions with the field E surrounding 
them and with the inner nucleus of the ion (see ref
erence 6), whereas this dependence was first ob
served experimentally by Townes and his co
workers.11 

5. Measurements of the quantity < v2 > can 
be made at very low concentrations of paramag
netic centers, where a comparison of the experi
mental and theoretical results can be made with
out considering dipole-dipole and exchange inter
actions between centers. These conditions can be 
fulfilled conveniently in the case of liquids, where 
the term <v2 >d+ex must be averaged on the 
basis of some hypothetical assumption as to the 
nature of the intermolecular motions. A com pari
son of our results for the manganese ion with the 
corresponding data for the same ion in aqueous 
solutions (see reference 12) shows that when 
crystals containing Mn++ ions are dissolved, the 
field E around the Mn++ ion is altered. The co
efficients in the Hamiltonian (5) which character
ize the field E around a Mn + + ion in aqueous so
lution are several times smaller than the values 
which we have used in our calculations. 
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