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AccORDING to the Blokhintsev-Jastrow1 model, 
the nucleon consists of a dense core and a more 
porous pion cloud. The basic states characterizing 
the electromagnetic structure of the nucleons are 
considered to be two- and three-pion states, whose 
diagrams are given in Fig. 1 (references 2 and 3). 

The two-pion state can be easily calculated, but 
a rigorous calculation of the three-pion state is 
very difficult.2 Therefore, we use phenomenological 
considerations to describe this state. Considering 
that the external field has a relatively weak influ­
ence on the nucleon structure, we disregard the 
presence of the photon (dotted line in Fig. 1). 
Then, instead of a two-pion state we get a one-
pion state, described by the plain Klein-Gordon4 

equation (with a delta-function source). On going 
to the three-pion state we suppose that an emitted 
virtual pion which has gone a distance of ,.., ti/ J.LC 

from the core makes a transition during its lifetime 
of ,..,fi/J.Lc2 to a new, "polarized" state which reveals 
its structural properties (a bound nucleon -antinu­
cleon pair, or "loop")* and through these interacts 
with the core, according to the Chew hypothesis, 
on the basis of a single-pion exchange. 5 One of the 
simplest diagrams of such a process is given in 
Fig. lb. 

Neglecting the photon, and supposing that the 
beginning (emitted) and the final (absorbed) 

a b 

FIG. 1. a- two-pion state; b- three-pion state. Solid 
straight line- nucleon N; wavy line- virtual pion ~r; dotted 
line- photon y. 

pions are the same, we can write down the equa­
tion for the wave function >¥ of such a II pion 
interacting with the core through a single-pion 
exchange, that is, by the Yukawa rule: 

L'l 'F -i (ttcr2 [(£- V (r)) 2 - (mc2) 2 J 'F = o, 
V (r) =- (gn gc ;r) exp (- (LCT / /,); (1) 

the right side is zero, since nucleon regions far 
from the core are considered. The solution of 
this equation has the form 6•8 

'F=exp[-ist 'tt]Y({),c;;)R(r), 

R (r) = cxp (- r(r0 ) (r / r0)i w (r r0), 

(2) 

Here n is the principal quantum number; l, the 
orbital quantum number; {3 = gcgrr/nc; gc is the 
nucleonic charge of the core; gii, the nucleonic 
charge of the II pion; Y ( (), cp) is the angular 
part of >¥; and the function w ( r/r0 ) goes rapidly 
to a constant a 0• 

From j :::::: 0 ( >¥ has no pole at zero) we get 
l 2:: 1, i.e., the lowest state of such a system is 
a p state. If the density of the II -pion cloud 
D = >¥2, j = 0 ( reference 3 ) then grr "" 0 .1 gc. 
If we consider that the mass of the II - pion 
m ,.., M, then it is necessary, in considering the 
core - II- pion model, to take the core motion 
into account. 7 In the "semiclassical" approxima­
tion we get (according to Sommerfeld7) expres­
sions for the wave functions of the II pion and 
the core, "IJ!rr and >¥c, in the center of mass 
system and the corresponding densities 

Dn ~~ Cn exp (- r ,'an), De= Cc exp (- r / ac), (3) 

where arr ~ 0.23 f, ac ~ 0.2 f, and Crr and Cc 
are constants (see reference 1 ) . 

The calculation of the mean square radius for 
the proton p and neutron n gives 

<r)(, = <0.76 rjJ) 2 , <r)~, ·~ <0.19 rfJ) 2 

(I rp = I0- 13 cm). (4) 

The results in (3) and (4) agree with references 1 
and 3. 
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FIG. 2 

To estimate the contribution to the moment from 
the three-pion state we use the relation of the mag­
netic moments to the corresponding mechanical mo­
ments and find that the magnetic moment of the 
three-pion state gn37r :::: 0.1 gn 27l', where gn27l' is 
the magnetic moment of the two-pion state. This 
also corresponds to previous results .1 •2 

In conclusion, I want to express my profound 
thanks to Academician N. N. Bogolyubov for valu­
able remarks and to Prof. L. I. Schiff for a pro­
ductive discussion. I am grateful to A. M. Korolev, 
A. F. Lubchenko, and Yu. M. Malyuta for comments 
on various points of the work. 

*The mass of the "polarized" IT-pion m- M (M is the 
nucleon mass), i.e., m > f.l. (f.l. is the mass of the "ordinary" 
pion rr). The dimensions of the IT-pion -11/Mc.' 
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THE appearance of cyclotron resonance in metals, 
which was predicted theoretically by Azbel' and 
Kaner, 1 •2 has so far been found in three metals: 
tin,3- 5 bismuth, 6- 7 and lead.8 In this note we pre­
sent briefly the results of our experiments on cy­
clotron resonance in indium at 9300 Mcs. 

The speci!llen was a "' 12 mm long wire of di­
ameter "'0.8 mm consisting of large crystals 
formed in a quartz capillary. At 4.2°K wt = 30 
( w is the circular frequency of the electromag­
netic field, and t the electron relaxation time; 
the value of t was derived from the residual re­
sistance.). 

The surface resistance of the specimen was 
measured by the method previously described,4 

which is based on the determination of the change 
in tuning of a coaxial resonator, containing acyl-
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indrical metal specimen, produced by applying 
an external magnetic field .. 

The results of measurements of the ratio 
R ( H )/R ( 0) [ R (H) is the surface resistance in 
a magnetic field, R ( 0) the resistance in the ab­
sence of a field] at 4. 2 and 2.45 °K are shown in 
the figure. The effective mass of the carriers re­
sponsible for the resonance can be calculated from 
the value of the field at which R ( H )/R ( 0) is a 
minimum. From the theory we have, at the mini­
mum, w = eH/m*c, from which we obtain m* 
= 0.8-0.9 m 0, where m 0 is the free electron 
mass. This value of the effective mass shows 
that the main groups of electrons are responsible 
for the cyclotron resonance observed in indium. 
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