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The approximate form of the magnetohydrodynamic equations has been obtained for a fluid of 
low electrical conductivity (small magnetic Reynolds number) in an external magnetic field. 
Several characteristic problems which illustrate the physical behavior of such a liquid in a 
strong magnetic field are examined. 

1. GALVANIC APPROXIMATION 

As is welllmown (cf. for example, references 
1 - 3), in magnetohydrodynamics there are addi­
tional characteristic dimensional quantities beyond 
those in ordinary hydrodynamics: the Alfven veloc­
ity, CA = B ( 41TJ.tp) -!12, and the magnetic field dif­
fusion coefficient, Dm = c2141fJ.tU. Here, B is the 
magnetic induction, p is the density, u the elec­
trical conductivity, and J.t the magnetic permea­
bility of the liquid, while c is the velocity of light. 
To these correspond two additional dimensionless 
similitude criteria, the magnetic analogs of the 
Mach number, vIc A, and of the Reynolds number, 
Rm = lv IDm or Rm = Z2w1Dm ( Z, v, and w are 
respectively the characteristic linear dimension, 
the velocity, and the frequency). The magnetic 
Reynolds number characterizes the entrainment of 
the magnetic lines of force by the liquid in its mo­
tion. If Rm » 1, the lines of force behave as 
though frozen in the material - this is the case 
which is usually considered in magnetohydrody­
namics, astrophysics, etc. We consider the other 
limiting case: Rm « 1. The equations used below 
can be obtained from the equations of magnetohy­
drodynamics by an expansion in powers of Rm, 
but it is more convenient to introduce them directly. 

The volume density of the electromagnetic forces 
f is 

(1.1) 

where j is the current density. The currents 
which arise in the liquid are proportional to its 
electrical conductivity (small), but may result 
in the appearance of rather large forces if the 
liquid is located in an external magnetic field. 
This is the case which is considered here. 

Because of its motion, an emf of order (vIc) B 
and a current of order u (vIc) B are produced in 
the liquid. The magnetic field due to this current 
is of order B1 ,..., Rm B and can be neglected when 

Rm « 1. The variation of B1 produces an induced 
electric field E1 ,..., Rm(vBic) which is always un­
important when Rm « 1. Thus, in the approxima­
tion being used here it may be assumed that the 
magnetic field is given and equal to the external 
field. This field satisfies the equations div B = 0 
and curl B = 0 (we assume that J.t is independent 
of the coordinates or is approximately unity). 

In determining the force f it is sufficient to 
consider only the currents which are produced in 
the liquid; the fields produced by these currents 
can be neglected. This approximation may be 
called the "galvanic" or non-induction approxima­
tion. 

The current density in the moving liquid is 

j = ( c I c) {[vx 81- V'cp- a A ;at}, (1.2) 

where cp is the scalar potential (in magnetic units, 
i.e., cp = CCf'abs), A is the vector- potential of the 
magnetic field (external) and curl A= B. We use 
the gauge condition divA= 0. As in "galvano­
statics" the equation for cp is obtained from the 
condition that the charge is neutralized. 

divj = 0. 

For a uniform liquid this condition yields 

t.cp = 8 curl v. 

(1.3) 

(1.4) 

If the conductivity is a function of coordinates, how­
ever, we have 

t.cp = 8 curl v- c (jV') cr-1. (1.4') 

Equation (1.1) for the volume forces assumes the 
form 

f = : 2 {rcvx8]x8]-[V'cpx8]-r 00~ x8]t (1.5) 

This force appears in the equation of motion of the 
liquid 

p(av ;at+ (vv)v) =- Vp + pg + TJ'V2v +f. (1.6) 

Here p is the pressure, g is the acceleration of 
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gravity, the viscosity force is written for an in com­
pressible liquid, and the viscosity is T/ = pv. 

In the galvanic approximation, in addition to the 
equation of motion of the liquid it is necessary to 
have one scalar equation (1.4), which does not con­
tain differentiation with respect to time; on the 
other hand, in true magnetohydrodynamics it is 
necessary to add a vector equation for BB/Bt. 

We assume that the magnetic field is constant, 
BA/Bt = 0. If the currents produced by the induced 
emf c-1 (v x B) can flow freely, the interaction of 
the liquid with the magnetic field results in an ani­
sotropic "friction force" f = - ( aB2/ c2 ) v 1• where 
v 1 = v - (v ·B) B/B2• If however div (v x B) 
= B·curl v f 0, in accordance with Eq. (14), 
charges will be produced and will create an elec­
tric field - V' cp • Charges and an electric field are 
also produced if the boundary conditions are such 
that the currents (a I c ) v x B cannot flow freely. 
In these cases the interaction of the liquid with the 
magnetic field does not produce magnetic friction 
and is not localized but, as before, the force f is 
a linear function of velocity. Since cp is linear 
in v (if the boundary conditions are linear ) , in 
the general case f is a linear function of the 
velocity taken at the same instant of time. 

We may note that the magnetic field and the con­
ductivity appear in f only in the combination aB2• 

In the galvanic approximation this is the only addi­
tional dimensional parameter which appears beyond 
the usual hydrodynamic quantities. 

In our analysis we shall consider a uniform in­
compressible liquid in a uniform magnetic field. 
In this case it is possible to obtain a convenient 
equation for the force f directly. Assuming that 
div v = 0, from Eq. (1.2) we find 

curl j = (cr/c)(BV)v-(cr;c)aB;at (1.7) 

and, using Eqs. (1.1) and (1.3) 

(1.8) 

where b = B/B is a unit vector in the direction of 
the magnetic field. It is apparent that in the inter­
action of the liquid with the field there is a consid­
erable change in the velocity component in the direc­
tion of the field. 

Viscosity effects and the Joule heating effects 
cause dissipation of energy; this energy is given 
by 

Qr. = ('fl I 2) (avt! axk + avk 1 axy, 

Qa=j2 fcr=(crjc2)([vx B]-V'rp)2 • (1.9) 

If V'cp = 0, the Joule dissipation can be regarded 
as the result of magnetic friction: 

Qa = -- fv c= (crB2 I c2 ) v~. 

In order-of-magnitude terms the ratio of the 
magnetic force to the viscosity force and the ratio 
of the corresponding dissipations are determined 
by the dimensionless Hartmann number, M = Kl, 
where 

(1.10) 

The ratio of the magnetic force to the inertia force 
is determined by the dimensionless number 

N = im/w '= imlfv = M 2R-1, 

where R is the Reynolds number, 

lm=crB2 /pc2 • (1.11) 

Which terms predominate in the equation of motion 
depends on the relative magnitudes of the quantity 
a B2, the velocity, and the linear dimensions. 

1. If aB2 is very small, so that M « 1, the 
magnetic field has only a small effect on the'motion 
of the liquid which, in the first approximation, is the 
same as in ordinary hydrodynamics. The chief new 
effects are the production of currents and potentials 
which, for a given velocity distribution, are deter­
mined by Eqs. (1.2) and (1.4). These effects can be 
used, for example, for measuring velocities. From 
a knowledge of the current one can find the force f; 
then, substituting in Eq. (1.6) if necessary, it is 
possible to determine the small corrections to the 
velocity and pressure. This case is typical for 
electrolytes; for example for a 25% solution of 
NaCl in water a= 2 x 1011 and for B = 103 gauss, 
K = 0.15 em - 1• For liquid metals under laboratory 
conditions it is easy to make M » 1. 

All the numerical examples below are given 
for mercury: the pertinent parameters are as 
follows: a= 0.95 x 1016 sec- 1, p = 13.6 g-cm- 3, 

T/ = 1.56 x 10-2 g-cm- 1 sec- 1, v = TIIP = 1.15 x 10-3 

cm2 sec- 1, Dm = c2/47ra = 0.75 x 104 cm2 sec- 1• 

For ·B = 103 gauss, K = 26 cm- 1, Ym = 0.78 sec- 1. 

The ratio R/Rm = Dm /v = 1.5 x 107 so that the 
galvanic approximation applies for values of the 
Reynolds number up to R ~ 107• 

2. At large values of the Reynolds number it is 
possible to have M » 1, but N « 1. In this case 
the magnetic forces are small compared with the 
inertial forces and the behavior of the liquid is 
approximately that of an ideal liquid. If the motion 
is laminar the magnetic forces play an important 
role in the dissipation of energy (damping of os­
cillations etc.). Furthermore, the magnetic forces 
change the nature of the boundary layers and this, 
in turn can change the flow as a whole and the sta­
bility conditions as, for example, in flow in tubes. 
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Flow between parallel planes has been shown theo­
retically4 and experimentally5 to be stable in a 
transverse magnetic field up to R ,..., 103 M. If a 
turbulence develops, however, the effect of the 
magnetic field is small. For motion on the basic 
scale the magnetic forces are small compared with 
the inertial forces since N « 1; however, the fre­
quencies of the turbulent motions increase with a 
reduction in scale and in all smaller scales it is 
certainly true that N = Ym I w « 1. When A.o 
,..., m-314, however, where the basic dissipation 
occurs ( cf. reference 2, §32) , the viscosity domi­
nates: KA.o ,..., Nl/2 R -1/4 « 1 so that the magnetic 
forces are also unimportant in dissipation. 

3. The effect of the magnetic field is most pro­
nounced when M » 1, N » 1, in which case the 
force f dominates. The high Joule dissipation 
characteristic of this case has a stabilizing effect 
on the flow. Stuart6 has shown, for example, that 
Poiseuille flow between plates is stabilized by a 
longitudinal magnetic field when N ~ 0.1. How­
ever, the stabilizing effect of the Joule dissipation 
may be insufficient if the production of the insta­
bility is associated with small-scale high frequency 
motions, for which N is already small. This is the 
case, for example, in the experiment carried out by 
Lehnert. 7 Turbulent motion for M » 1 and N » 1 
is also subject to a strong effect of the magnetic 
field, which plays a decisive role in motion of 
large-scale vortices and may change the entire 
motion pattern. 

At small Reynolds numbers, if curl (v·V')v = 0, 
because of symmetry, from Eqs. (1.6) and (1.8) we 
can obtain the following equation for stationary 
flows; this equation determines the "leakage" of 
the fluid through the magnetic field: 

~~v-x2 (bV')2 v = 0. (1.12) 

From Eqs. (1.4) and (1.6), curl f = c-1 ( B • \7) j and 
Eq. (1.2) we obtain the same equation for cp: 

~~cp- x2 (bV')2 cp = 0. (1.12') 
Equation (1.12} for curl v has already been ob­
tained by Lehnert8 for stationary small perturba­
tions by linearization of the equations of magneto­
hydrodynamics with an arbitrary conductivity. 

Suppose that a characteristic dimension of the 
system in the direction perpendicular to the field 
is Z, and along the field is Z11. When M = Kl » 1 
both terms in Eq. (1.12) may be of the same order 
if zll ,..., K-1 « l or zll ,..., Kl2 » l. An example of a 
solution of the first type, which describes a per­
turbation transverse to the field, gives the bound­
ary layer formed in the Hartmann9 analysis of flow 
between plane plates in a perpendicular magnetic 
field: 

v = v0 [cosh xh -cosh x (h- y)] ;cosh xh. (1.13) 

The magnetic field is along y, the velocity along z, 
and the distance between the plates is 2h. 

A solution of the second type describes perturba­
tions which are along the magnetic field. For ex­
ample, they may act like tangential discontinuities. 
Equation (1.12) is satisfied by the expressions 
v = c+v+ + c_v_, where v± represents solutions 
of the equation 

{~+x(bV')}v± = const±. 

Let B =By. v = Vz and alaz = 0. If we neglect 
a21ay2 compared with a21ax2 in the ~ operator, 
the curly brackets will contain the same operators 
as those in the usual thermal-conductivity equation 
so that we can write the approximate solution imme­
diately: 

~ 

V+= ~0 CD(V4( X+ )(X-Xo.)). CD(~)= v2_\e-1'dt. 
Yo y n ~ (1.14) 

This solution describes the velocity jump from 
-v012 to +v012 at x = x0• The effective half 
width of the discontinuity 6 is 

o = V 4 (y0 + y) I x. (1.15} 

If K (y0 + y) » 1, B21By2 can be neglected com­
pared with a2 I ax2• 

We now compute the current. From the equilib­
rium equation fz + ry~v = 0, we obtain h = - ( ciB) 
x ry~v; however, ~v = KBviBy so that h = -..[(iii 
x Bvlay. Then, integrating Eq. (1.3) we have jy 
= ..[(iii av I ax. Thus, ..[(iii v ( x, y) is a function of 
the current for the vector j. The "surface" current 
flowing along the discontinuity is Jy = J jydx = ..[(iii v0 

or 

J+ =-V OYj ([nxvh + [nxv]z); (1.16) 

the subscripts 1 and 2 refe-r to the left and right 
side of the discontinity, n1 , 2 corresponds to the 
corresponding inward normals. Knowing the cur­
rent, it is easy to find the potential gradient acp I By 
= - ( BIK) BviBx, BcpiBx = -vB + ( BIK) BviBy. 
Whence it is apparent that there is a tangential 
discontinuity in the charge and the discontinuity 
in the ele.ctric field is 

(1.17) 

These same results apply if there is a fixed pres­
sure gradient Bplaz = - r; it is only necessary to 
add the constant terms h ( oo) = -crIB and c2r I 
uB, to jx and Bcplax. 

The tangential discontinuity may also be re­
garded as a jet of electric current along the mag­
netic field. In the "galvanostatics" of solid con­
ductors such jets are not possible because the 
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current tends to flow along the line of least re­
sistance and diverges to a large cross section; 
in a liquid, however, the force due to the h com­
ponent produces a velocity Vz, which in turn re­
sults in an emf which supports the current in the 
jet. 

Changing the sign in front of y in Eq. (1.14) we 
obtain the solution v _, which corresponds to the 
current J_ and differs from Eq. (1.16) only in 
sign. 

It will be shown below that in the motion of a 
liquid the current frequently appears only in thin 
layers and has a surface density {7;rj v. In these 
cases the region of applicability of the galvanic 
approximation can be expanded since the magnetic 
field which is produced is of order B1 "' ( 4rrJJ./ c) 
x {7;rj v"' (Rm/M) B rather than RmB. 

2. SMALL OSCILLATIONS 

In small oscillations we can neglect the quad­
ratic term ( v · Y') v. The equation of motion is 
written in the form 

iJv;iJt=v'IJ2 v+F, divv=O, (2.1) 

where F = - Y'p' I p + f/ p and p' is the deviation 
of the pressure from the equilibrium value p0• In 
accordance with Eq. (2.1), div F = 0, and from 
Eq. (1.8) we have 

(2.2) 

Volume waves. We consider a plane wave in which 
all quantities are proportional to exp ( i k · r iwt). 
From Eqs. (2 .1) and (2 .2) we find that the possible mo­
tions for a plane wave are two slipping motions v .L k, 
which are dall}ped with the same decrement 

w = -i(vk2 + 'lm(bn) 2), (2.3) 

where n = k/k. The magnetic damping is due only 
I 

to the field component parallel to the gradient .. The 
perturbation of the motion is found from div F = 0; 
the quantities j and cp are found from Eq. (1. 7) 
and Eq. (1.4): 

p' irm P = -fi2 (bk) (bv), 
• aB2 

J =- ck" (bk) [kxvJ, 

iB 
rp =- F([bxk] v). (2.4) 

Thus, in the galvanic approximation magnetohydro­
dynamic waves are not possible. The small con­
ductivity leads to the appearance of an additional 
mechanism but, in contrast with the high-conduc­
tivity case, there is no elastic restoring force. 
When w "' Ym· Rm = Ym /Dmk2; this result has 
been obtained by Lundquist;10 the galvanic approxi­
mation applies if Rm is small. For mercury with 
B = 104 gauss, k = 1 cm- 1 and Rm = 10- 2• 

If the compressibility of the liquid is taken into 
account we find that in addition to the damped slip­
ping motion it is also possible to have longitudinal 
sound waves with frequencies given by w = csk. 
The acoustic velocity is large (for mercury cs 
= 1.5 x 105 em/sec) so that it is not very sensitive 
to the magnetic field (Ym « w); however, the damp­
ing of the acoustic wave may be a strong func-
tion of magnetic field. The current (a/c) v x B 
flows freely along k x B so that the Joule dis­
sipation can be regarded as the result of mag­
netic friction. The mean dissipation rate is 
aB2/c2vi =Ym(bxn) 2 pv2, where pv2 is the 
energy density of the wave and the magnetic damp-
ing is 

(2.5) 

We note that this quantity is anisotropic and in­
dependent of frequency. Equation (2.5) applies only 
when Rm = c~ /wDm « 1, i.e., for high (and not 
low!) frequencies; for example, w » 106 for mer­
cury. The ratio of the magnetic damping to vis cos­
ity is of order Ym /vk2 = K2k2; with w "' 106 sec - 1, 

k"' 10 em -t and B = 104 gauss, this ratio is ap­
proximately 1 o3• 

Surface waves. Suppose that the z axis is 
vertical and the x axis is in the direction of prop­
agation, so that all quantities vary as exp ( ikx- iwt) . 
The unperturbed surface is given by z = 0 and the 
perturbed surface by z = 1; = 1;0 x exp (ikx- iwt). 
The unperturbed pressure is Po= -pgz. We limit 
ourselves, for simplicity, to the case in which vis­
cosity can be neglected k2 « K2 • In this case the 
boundary conditions at z = 0 (with surface tension 
taken into account) assume the form ( cf. refer­
ence 2, §61) 

V2 (Z = 0) =- iw~, p' (z = 0) = (pg + ~k2)~, (2.6) 
where a is the surface tension coefficient. An 
additional condition at the surface is jz = 0. 

It is apparent that it is sufficient to consider 
the velocity components Vx and Vz, taking vy 
= 0. In this case the force F, as follows from 
Eq. (2.2), has no y component; curl v and the 
current density j are along the y axis so that 
the condition jz ( z = 0) = 0 is satisfied trivially. 
Thus, By of the magnetic field has no effect on 
the wave. 

We seek a solution proportional to emz and 
introduce the complex vector q ( k, 0, - im). From 
Eqs. (2.1) and (2.2) we find the condition which 
must be satisfied for a non -trivial solution 

iwq2 = 'lm(bq)2 , (2.7) 

and also q · v 0. The quadratic equation (2. 7) 
determines m; we must take values which give 
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damping inside the liquid, Re m > 0. The expres­
sion for p' can be obtained by replacing k by q 
inEq. (2.4). Using q·v=kvx-imvz=O, we can 
express vx and p' in terms of Vz: 

p' I p = (iw I k) (bqr1 (mbx- ikbz) v,. (2.8) 

Here we have also made use of Eq. (2. 7). Substi­
tuting Eq. (2.8) in Eq. (2.6), we obtain the relation 
for the frequency: 

(2.9) 

where w0 is the frequency in the absence of the 
magnetic field: 

wg = gk + ock3 I p. (2.10) 

After some elementary algebraic transforma­
tions, we obtain from Eqs. (2.7) and (2.9) 

ml k = (w~bx + w2ib,) (w2bx + w~ib,r1. (2.11) 

w4 -w~ + w3i'(m (b! + bi} = 0. (2.12) 

If Ym « w, damped oscillations are possible: 

(2.13) 

The motion in this case is approximately potential 
motion, m ~ k, as is to be expected for N « 1. 
However, if Ym » w the perturbations of the sur­
face are damped aperiodically: 

W =- i'(m (b! + bi). (2.14) 

These results agree with the experimental data. It 
has been found in reference 8 that in a field of 104 

gauss surface oscillations in mercury are com­
pletely suppressed. Under these conditions Ym 
= 78 and the oscillations are damped rapidly; when 
k < 4 em -i, generally speaking it is impossible to 
have oscillations at all. 

3. FLOW ALONG A TUBE 

We consider stationary flow of a liquid in a long 
tube transverse to the magnetic field. We take the 
z axis along the axis of the tube: v = Vz and B 
=By. All quantities are independent of z except 
for the pressure, which has a constant derivative 
in this direction.* This problem has been solved 
by Schercliff11 for a non -conducting tube with cross 
section symmetric with respect to the x axis. The 
solution in reference 11 was obtained by substitution 
of variables; for the case of a conducting tube or an 
asymmetric tube this procedure is not quite as ef-

*In the liquid there are induced currents in the xy plane; 
the magnetic field in the z direction due to these currents has 
no effect on the force fz since there are no time variations so 
that for an infinite tube length it is not necessary that Rm be 
small. 

fective. Below a more general case is considered. 
Projecting Eqs. (1.1), (1.2), and (1.6) on the z 

axis we have 
f + 'lj~V + fz = 0, 

f, = c-1jxB =- (aB 2 I c2) (v + B-1ar.pl ax). (3.1) 

Here r = - Bp/Bz and for an inclined tube r 
= - Bp/Bz + pg sin a, where a is the angle of 
inclination with respect to the horizontal. 

When M « 1, viscosity predominates and the 
flow is approximately the same as ordinary Poi­
seuille flow. We consider the opposite limiting 
case, M » 1. In this case viscosity is important 
only in the thin layers close to the walls of the tube. 

Boundary layer. We will approximate a small 
section of a wall as a plane and introduce the co­
ordinates s, along the periphery of the cross sec­
tion, and r, along the normal n. Taking deriva­
tives with respect to r only we obtain the solution 
(1.12) corresponding to the Hartmann layer v = v0 

x[1-exp(-Knr)], where K~=K2 (b·n) 2 • By v0 

we mean the value of the velocity obtained from the 
solution for the inner region for a given point of the 
periphery. 

Let the wall be insulating; then, close to the wall 
j = js. Using Eq. (1.7) we have 

j8 = (aBn/C)exp(-xnr) + jsoo· 

The "surface" current in the layer is 

Js = ~Us- jsoo) dr = Va'I)V 0 

or 

J = Va'IJ [nxv0] (bn) I I (bn) I· (3.2) 

If jsoo « js, using Eq. (1.9) it is possible to com­
pute the energy dissipation in the Hartmann layer. 
The viscous loss and Joule dissipation are the 
same and their sum per unit surface is 

(3.3) 

If the conditions in the layer change slowly and a 
current j flows toward the insulating wall, it is 
possible to write an equation for conservation of 
charge for the layer 

dJs Ids+ (jn) = 0. (3.4) 

Let the wall of the tube be highly conducting; in 
this case it assumes a fixed potential cp 0• If the 
electric field outside the layer is much smaller 
than the field inside we can write the potential 
drop in the layer cp 00 - cp o. 

Using Eq. (1.4) we have 

r.p = r.p0 + B.v0x;;1 [I- exp (-xnr)]. 

The potential discontinuity in the layer is 
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<:p00 -q>o=(Bixn)(b[nxv0]). (3.5) 

The relations in Eqs. (3.3)- (3.5) serve as the ef­
fective boundary conditions for the equations inside 
the region. 

II 

FIG. 1 

It should be noted that this picture of the layer 
is valid only when KnZ » 1; if, however, Bn- 0, 
the relations which have been obtained no longer 
hold. This situation pertains, for example, to the 
regions near the points x1 and x2 (Fig. 1). If 
the wall of the tube is parallel to the magnetic 
field a longitudinal surface layer of the type con­
sidered by Shercliff11 is formed; this is similar in 
structure to the tangential discontinuity (1.14). The 
layer thickness is of order -fT7K [ cf. Eq. (1.15) ]. 

Viscosity can be neglected in the inner part of 
the tube and Eq. (1.12) yields a2v/By2 == 0, 
a2cp/By2 == 0. Whence 

v (x, y) = v0 (x) + V1 (x) y, cp (x, y) = cp0 (x) +cp1 (x) y, (3.6) 

where cp 0 and cp 1 are related to v0 and v1 in 
accordance with Eq. (3.1). In the inner region, 
from Eq. (3.1) ix is constant and since div j == 0, 
jy depends on x and is determined by Eq. (1. 7) 

ix = -(cf I B), diuldx = ('"Bic)vi(x). (3.7) 

Tube with insulating walls. Let the cross sec­
tion of the tube be given by two single-valued 
curves y1 (x) and y2 (x) (cf. Fig. 1). The effec­
tive boundary conditions (3 .2) at these boundaries 
can be written in the form 

J 1 = Va'fjV (x, YI), j2 =- Va'fjV (x, Y2). (3.8) 

In terms of the difference of these quantities, using 
Eq. (3.6) it is easy to express the total flow of 
liquid V through the cross section of the tube: 

x, 

V = ~ vdxdy = 2-1 (a'Yl)-'1·~ (J1 - J2) (Y2- YI) dx. 
x, 

Now, making use of Eq. (3.4) and taking account of 
the fact that ny ds == dx and nx /ny == - dy I dx, we 
obtain 

d (J1 - ixYI) I dx =- jy, d (J2- ixY2) I dx =- iu· (3.9) 

Subtracting the second equation from the first and 
integrating, we have 

J1- J2 =- ix (Y2- Y1) = (cf I B) (y2- Y1). 

Thus, the flow of liquid in a tube of arbitrary cross 
section with non-conducting walls is 

x, 

V = (cf I B V a'fl) ~ fY2 (x)- Y1 (x)F dx. (3.10) 

Summing Eq. (3.9), taking account of Eqs. (3.7) and 
(3.8), and neglecting the term of order 1/Kl, we 
have 

(3 .11) 

If the tube is symmetric with respect to the x 
axis jy == 0, v1 = 0 and Eq. (3 .10) coincides with 
the result which has been obtained by Shercliff. 
If the shape is not symmetric, then jy "' ix but the 
velocity shows almost no change along the field v 1Y 
« v0• Actually, from Eq. (3.10) v"' crZ/B{(i1) 
whereas from Eq. (3.7) v1Z"' (c/aB) jy"' v/KZ. 

Tube with highly conducting walls. A com­
pletely different picture obtains if the walls of the 
tube are highly conducting. In this case, the cur­
rent can flow freely across the magnetic field, 
being closed in the walls of the tube, the potential 
of which may be assumed constant. In the zeroth 
approximation the interaction of the liquid with the 
field leads to magnetic "friction" and the term as­
sociated with the production of a potential differ­
ence is small, approximately M-1• In this approxi­
mation, for the entire inner region we have 

v=c2 flaB 2 , j=ix=aBv;c, cp=O. (3.12) 

The corrections associated with the next approxi­
mation can also be found easily. As before, in the 
inner region we can neglect viscosity since TJi:::..v 
"' M-2 so that v and cp inside are of the form 
given in Eq. (3.6). The electric field inside 
("' cp /l) is much smaller than in the layer ("' Kcp ) 
so that we can use the effective boundary condition 
in (3.5). If y == y1 and y == y2, this condition be­
comes 

cp (x, y1) = (Bv I x) dy1 I dx, cp (x, y 2 ) = - (Bv I x) dy2 I dx. 

The quantities cp 0 and cp 1 are determined by the 
conditions: 

'flo (x) = (Bv I x)(y2- Y1t1 d (Y1Y2/ I dx, 

cpi(x) =- (Bv I x) (Y2- Y1t1 d (Y2- YI) I dx. (3.13) 

Tubes with electrodes. Comparing the velocity 
in tubes with conducting walls and nonconducting 
walls, we see that for a given r, the velocity in 
the first case is approximately M times smaller 
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than in the second. If the walls of the tube are in­
sulating, but the upper and lower walls have elec­
trodes which are connected through an external 
resistance R, it is possible to obtain a continuous 
transition between the two cases. The equivalent 
electric circuit of this tube is shown in Fig. 2. The 
current Ii produced by the induction emf le flows 
across the tube through the liquid ( Ri) part of it 
returning through the resistance R and part through 
the liquid in the boundary layer ( Rs ) . 

We consider in greater detail a tube of rectan­
gular cross section ABCD in which the sides AB 
=CD= l, perpendicular to the magnetic field, are 
insulating and the sides AC = BD = h, parallel to 
the field, are highly conducting and connected 
through an external resistance. The length of the 
tube is L. On sides AB and CD Hartmann layers 
are formed; on walls AC and BD longitudinal 
boundary layers similar to the Shercliff layer are 
formed. Since the thickness of the longitudinal 
layers [cf. Eq. (1.15)] is approximately (h/K )1f'l 
,..... Ml/2 K -t and is much thicker than the Hart­
mann layers, the resistance of these layers is 
much smaller and the role they play in dissipation 
is not important. In general they need not be con­
sidered. From Eq. (3.6) and the symmetry condi­
tions, over the entire inner region of the tube 
cp = cp ( x); consequently, jy = 0. Whence it follows 
that the currents in the layers are constant and, 
in accordance with Eqs. (3.2) and (3.6), the veloc­
ity v is constant over the entire inner region. 
For this case of uniform flow it is easy to find 
the current which issues from the tube: 

I= ixhL + 2J,L = -cfhL / B + 2 J/o.,lvL. 

and the difference of potentials between the con­
ducting walls 

ldrp 1 dx = -lvB + lc2f I oB. 

On the other hand, l dcp/dx = ciR so that 

c2r ( . R ) 1 , R )-1 v =-. 1-t-- I 1--r--R ' 
oB' R; \ s 

(3.14) 

where we have used the notation 

R; = l 1 ohL, R,=xll2oL, c=(vjc)Bl. (3.15) 

The meaning of Eq. (3.14) is simple. When R » Rs, 
the electromagnetic force IBZ/ c vanishes since 
I ~ 0. The magnetic field is found to have only an 
indirect braking effect, producing a thin layer in 
which the friction force is TJKV; hence V = rh/27]K 
is approximately M times smaller than in Poiseuille 
flow. If R « Rs, the basic retardation e~~ect is due 
to the force IBZ/c, where I= le ( R + Ri) so that 
v = ( c2r I aB2 ) ( 1 + R/Ri). 

For other cross sections the circuit (Fig. 2) is 
still valid but Eq. (3.14) is accurate only to an order 
of magnitude. We may note that if the side walls 
are inclined rather than parallel to the field, Hart­
mann layers will also be formed on them. This 
means a certain increase in resistance; on the 
other hand there is an increase in the stability of 
flow at high velocities since the effective Reynolds 
number Ro = vo/v is reduced ( o is the thickness 
of the layer ) . 

Self-excited dynamo. If the current flowing out 
of the tube I is used for producing the magnetic 
field in the tube, under certain conditions it is pos­
sible to obtain a self-excited system. In this case 
the magnetic field is proportional to the current 
B = KI, where K"' 4m/ch and n is the number 
of turns of the coil which produces the field. As­
suming that ft = (v/c) BZ, we obtain the equation 
which determines the current: 

Ldl/ dt + R.err I = 0, 

R.err= R. + R.;R., (R.; + R.,f1 - R., (R.; + R.,f1 Klv / c, 
(3 .16) 

where L is the self-inductance of the coil. The 
criterion for self-excitation is Reff < 0 or v 
>vexc where Vexc"' (c2h/4mZ)[Ri+R(1+Ri/Rs)]. 
At small fields Rs "' Ri. In order to increase K it 
is convenient to increase the number of turns of the 
coil; conversely R can be reduced by reducing the 
number of turns. In a system without iron the turns 
are wound along the tube R "' n2L/ acS, where ac 
is the conductivity of the wire in the coil, S is the 
total cross section of the turns ( S ~ hl). The most 
favorable conditions are obtained when R "' Ri or 
n2 "' a0 S/ aL2• When a0 I a = 60 (copper and mer­
cury) this condition gives n "' 3 - 4. For mercury, 
with L = 10 em an estimate yields Vexc "' 103 or 
several times 102 em/sec. If a ferromagnetic ma­
terial is used in the electromagnet, it is possible 
to reduce the dimensions of the turns and a greater 
number of turns can be used for the same R. With 
n = 10 and L = 10 em, for example, for mercury 
we obtain Vexc"' 102 em/sec. 

After excitation the field grows so long as its 
retarding effect does not reduce the velocity in 
such a way that Reff = 0 or 4mZv I c2h = R + Ri. 
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Substituting this criterion in Eq. (3 .14) we find the 
magnetic field B2 = 41T1lop, where op = r L is the 
pressure difference in the gap with the magnetic 
field present. With op"" 1 atmos, values of sev­
eral kilogauss are obtained. If iron is used, the 
field can be limited by saturation; this causes a 
reduction in K. 

This scheme represents an example of the trans­
formation of mechanical energy of a liquid into mag­
netic energy although, obviously, it is not a "true" 
hydromagnetic dynamo since solid conductors and 
insulators are used. 

Flow along a channel (trough). If the tube is 
symmetric with respect to the x axis, in the me­
dian plane the boundary conditions for a free sur­
face jy = 0 and fJv/By = 0 are satisfied; hence 
the problem of a channel reduces to the problem 
of a tube with r = - gp sin a. For example, the 
flow of a liquid layer of thickness h along an in­
clined plane is the same as the flow (1.13) between 
plates with a spacing 2h. When Kh » 1 the flow 
velocity along an insulating inclined plane is Kh 
times smaller than along a conducting plane. 

The damping of surface waves has been con­
sidered in Section 2 for short wave lengths, i.e., 
kh » 1. On the other hand, if kh « 1 it is pos­
sible to have ( cf. reference 2, § 13) long gravita­
tional waves with propagation velocities ..fiji . In 
these waves the velocity is essentially parallel to 
the bottom. We now find the damping of these 
waves (assuming that it is small and that Kh » 1) 
in the presence of a vertical magnetic field. If the 
trough is conducting, the currents flow freely and 
the damping is computed in exactly the same way 
as for the acoustic waves. The decrement is y 
= Ym/2 [cf. Eq. (2.5)]. If the trough is insulating, 
dissipation takes place chiefly in the boundary layer 
at the bottom. According to Eq. (3.3) the mean dis­
sipation per unit surface is /aii ( B/c) v2; com­
paring this with the energy ofthe wave hpv2, we find 

r = v IJ"f/B I 2hFc ,= "(m I 2xh. (3.17) 

For a channel of arbitrary cross section the damp­
ing can be determined by using Eq. (3.10) to com­
pute the resistance of a corresponding symmetric 
tube. 

4. ROTATION OF A LIQUID 

We introduce. the cylindrical coordinates r, cp 
and z. We assume that a/~cp = 0, that the mag­
netic field is vertical, B = Bz, and that the veloc­
ity of rotation v cp = v ( r, z). We will also assume 
that vr, Vz « v and neglect curl (v · Y') v so that 
Eq. (1.12) can be used. We will also neglect the 

meniscus at the free surface; at small rotation 
velocities this procedure is valid. 

Rotation of a Liquid Caused by Rotation of the 
Bottom of the Container 

A. Insulating Bottom. Let the annular region 
R1 ::S r ::S R at the bottom be rotated with a con­
stant angular velocity Q. The boundary conditions 
are of the following form: on the bottom z = 0, 
v = vd (vd = Qr for R1 ::S r ::S R, vd = 0 for 
r < R1 and r > R), jz = 0 or ocp/oz = 0; at the 
free surface z = h, ov/oz = 0, jz = 0 or ocp/oz 
= 0. In a strong magnetic field, M » 1, only the 
layer of liquid above the rotating part of the bottom 
rotates. It is easy to construct the approximate 
solution (1.12) in this case. At r = R1 and r = R 
th:re ar~ tan~ential discontinuiti~ in the velocity 
v- QR1(2 + <P) and v = QR (!- <P ), where [cf. 
Eq. (1.14), x = r -R1 or x = r -R] 

<D = 114 [<I> (V xI 4zx) +<I> (V x ;4 (2h-z) x)], (4.1) 

and between the discontinuities the liquid rotates 
as a whole, together with the bottom, with veloc­
ity Qr. In this case, Eq. (1.4) (with the boundary 
conditions in (1.17) at the charge discontinuities) 
gives ocp/or = BQr = vB, whence jr = 0 so that 
no tangential force acts on the liquid. The centri­
fugal force pv2/r is equalized by the pressure 
gradient. Across the rotating liquid there is a 
potential difference ( BQ/2) ( R2- R~). When R1 
= 0 there is no inner dis continuity. 

We consider the velocity discontinuity in greater 
detail, for example, at r = R. Equation (4.1) is a 
superposition of solutions for current jets which 
flow upward and downward; for z = h, one is easily 
convinced, this equation yields jz = 0, a current 
jet which behaves as though reflected from the 
free surface. At the bottom the current is closed 
by the Hartmann layer, which is formed at the inter­
face of the rotating and fixed portions of the bottom 
at r = R. In accordance with Eq. (4.1), the velocity 
distribution at the interface of these layers is given 
by the relation 

Vo = (QR / 4) [3- <P (Vx!8hx)], x < 0; 

Vo=(D.R/4)[1-<P(Vx/8hx)], x>O. (4.2) 

The current entering the layer is jz = faii av0 /ox, 
and the current in the layer is given by Eq. (3.2), 
where, in place of v0 we substitute v0 - Vd· It is 
apparent that the equation of continuity (3.4) is sat­
isfied; at x = 0 from the right and left there flow 
currents whose sum is exactly equal to the current 
in the jet which diverges from this "point." The 
only place at which the indicated solution does not 
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apply is in a region of dimensions given roughly by 
K-1 at x = 0, z = 0, which is a singularity point. 

Integrating the friction expression 1JK (v0 - QR), 
we can compute the moment of the friction force 
Mz which acts on the rotating bottom: 

(4.3) 

B. Conducting Bottom ( Lehnert experiment 7 ) • 

In place of the condition o<ploz = 0 at the bottom, 
here we have o<plor = vB or jr = 0. As in the 
preceding case, in the annular region R1 ~ r ~ R 
the liquid rotates with the bottom; v = Qr, o<plor 
= vB and at r = R1 and r = R there are velocity 
discontinuities. However, in this case no Hartmann 
layer can be formed; hence the solution for the tan­
gential discontinl!ity, although qualitatively similar 
to the earlier solution, is not made up of self­
similar solutions (4.1). We may assume, from 
Eq. (4.2), that the half-width of the discontinuity 
is given by 

o=Vsh;x. (4.4) 

Under the conditions of the Lehnert experiment 
(h=0.6cm., R1 +R=7cm, R-R1 =1cm., 
Q = 0.2 rev I sec) the rotating ring of liquid starts 
to form at approximately B = 600 gauss; this re­
sult is in qualitative agreement with Eq. (4.4) which, 
for this field, yields 6 = 0.55 em. 

The experiments carried out by Lehnert indi­
cate that the tangential discontinuity is not stable 
and that a vortex path of cylindrical vortices, 
which behave like the rollers in a roller bearing, 
is formed under the rotating ring. As has been 
indicated by Lehnert, this effect is to be associ­
ated with the influence of the magnetic field on 
the form of flow. The velocity profile in the tan­
gential "jump" has an inflection point and flow 
patterns of this kind, as is well known from the 
theory of stability in ordinary hydrodynamics, 12 

become unstable at Reynolds numbers of the order 
of several tens. For the highest field which was 
used ( B = 8000 gauss), however, a calculation 
made on the basis of Eq. (4.4) gives R0 = volv 
= 570. Correspondingly, N0 = Ym61v = 1.7; this 
value is insufficient for stabilization since an in­
stability may develop completely in regions with 
dimensions appreciably smaller than 6. It is rea­
sonable to expect that with a several-fold reduction 
of the rotation velocity (so that the ratio RIN 
= v2 I VYm is of the order of ten) the flow would bt­
stable. 

The value of N is rather large for the rotati!!;; 
liquid ring as a whole; for l = R- R1 = 1 em we 
find N = 14, R = 3.8 x 103 • In the experiment car­
ried out by Lehnert the stabilizing effect of the 

magnetic field is felt and instead of the develop­
ment of turbulent motion in the jet there is a proper 
vortex row with a relatively small number of large 
vortices. 

Rotation of a Liquid by a Transverse Current 

Let a container with liquid, a cylindrical con­
denser with inner radius R1, outer radius R, and 
height h, be placed in a strong magnetic field B 
= Bz. The faces of the container are insulators 
while the side walls are cylindrical coaxial elec­
trodes. If a current flows between these walls the 
liquid is set into rotation. At the electrodes there 
are longitudinal boundary layers with thickness of 
the order of 6 in Eq. (4.4); Hartmann layers are 
formed at the bases, In the inner region the viscos­
ity can be neglected in accordance with Eq. (1.12) 
and, in this region. a2vlaz2 = o and 82<ploz2 = o. 
Invoking the symmetry conditions we have v = v ( r) 
and <p = <p(r) so that jz = 0. Thus, the total cur­
rent in each of the Hartmann layers 27TrJs is in­
dependent of radius and, since Js "' v, we have 
v "' r- 1• In the imler region there is a potential 
flow. When v "" r-1 the viscosity force is ex­
actly equal to zero and consequently there is no 
radial current. The longitudinal electric field here 
is compensated by the induction emf o<plor = vB. 
The total current I flows in layers at the faces 
(I = 2 · 2 7T r ..fUTi v ) , whence 

(4.5) 

In ordinary hydrodynamics, flow between cylinders 
is stable when v "' r-1; since the magnetic field 
increases the stability, one may expect that the flow 
will also be stable in the case considered here. 

It is interesting to note that the velocity is in­
dependent of magnetic field although the rotational 
moment is proportional to the field. The point is that. 
friction at the faces is also proportional to the field 
since the reciprocal thickness of the layer K "' B. 
It can be shown that the resistance to rotation arises 
at the intersection of the magnetic lines of force at 
the faces of the container. This flow pattern applies 
if the longitudinal layers (thickness of order 
(hiK)t/2 ) are thin enough, i.e., if h « KR2. If, for 
example, h "' R "' 10 em this means that B » 4 
gauss. For h - oo 13 the friction force is of order 
1JV IR and the rotational force is approximately 
jBic so that v"' I1BRI27TC1J, where I1 is the cur­
rent per unit height. In a real cylinder of height h 
this relation applies only when h > KR2• In rotation 
of a gas of low density the thickness of the layer 
K-1 may be smaller than the mean free path, in 
which case the gas does not adhere to the faces 
and the velocity again increases with field. 
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As long as the mode of rotation is not estab­
lished the current flows over the entire cross sec­
tion and communicates to the liquid a velocity given 
approximately by (I/271'Rh) B/cp; hence, for a con­
stant current the time for establishing the velocity 
(4 .5) is of order t 0 = h ( VYm)- t,h. For example, 
with h = 10 em and B = 5 x 103 gauss, t 0 = 1 min. 

The rotation of the liquid produces a radial pres­
sure gradient Bp/Br = pv2• In the layers at the 
faces the liquid has a smaller velocity than in the 
remaining part of the container so that the motion 
is characterized by circulation in the meridian 
planes; the liquid in the layers moves towards the 
axis while the liquid in the center part moves away 
from the axis. The azimuthal currents can flow 
freely and there is a radial magnetic friction force 
- ( aB2/c2 ) vr which equilibrates the pressure gra­
dient. In this case the radial velocity in the layers 
is of order Vr"' v 2c2/aB2r = vN-1 while the veloci­
ties vr and Vz in the center part are smaller by 
a factor of Kh or KR. Above we have neglected 
(v • V') v terms in the azimuthal velocity equations 
as compared with the term vD.v. The ratio of the 
neglected terms to those which have been consid­
ered is of order (v/ymR) 2 = N- 2; for example, 
with v = 102 em sec- 1 and B = 104 gauss, we 
have N- 2 = 2 x 10-2• 

I am indebted toM. A. Leontovich and E. P. 
Velikhov for discussions. 
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