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The physical principles that determine the stability of magnetic states of a ferromagnetic 
monocrystal, with respect to external magnetic fields and to elastic forces, are considered. 
A formula is derived for the minimum value of magnetic fields and stresses at which the 
equilibrium of a domain wall passing near a nonmagnetic inclusion is destroyed, and at 
which an irreversible change of magnetization occurs. On this basis an explanation is 
given for the phenomenon, familiar experimentally, of strong magnetization of ferromag
nets in weak magnetic fields by shocks or blows, and formulas are derived for estimating 
the irreversible changes of magnetization produced by elastic stresses. An explanation is 
given for the observed stability, with respect to elastic forces, of magnetic states corre
sponding to the ideal magnetization curve. 

THE magnetic moment and mean magnetization of 
a ferromagnetic body are, as is known, not single
valued functions of the magnetic field intensity H, 
the temperature T, and the components Uik of 
the stress tensor that represents the effect of ex
ternal forces. The magnetic moment can assume 
a value other than the original one when the values 
of. H, T, or Uik• undergoing some kind of fluctu
ation, return to their original values (magnetic, 
thermomagnetic, and magnetoelastic hysteresis); 
it can also change with time though the values of 
these quantities remain constant (magnetic after
effect). 

The present work deals with the physical prin
ciples that determine the stability of magnetic 
states of a ferromagnetic monocrystal with respect 
to elastic forces. An explanation is given for the 
observed stability of magnetic states correspond
ing to the ideal magnetization curve. 

1. EFFECT OF EXTERNAL STRESSES ON THE 
COERCIVE FORCE AND MAGNETIZATION 
OF MONOCRYSTALS 

The coercive force of a ferromagnetic mono
crystal, magnetized along an axis of easy magneti
zation, depends on a number of factors and is usu
ally a sum of several terms, for example 

(1) 

where the first term is connected with the effect of 
inhomogeneous internal stresses, the second with 
the effect of inclusions on the movement of walls 
between domains. If the magnetic anisotropy con-
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stant K » A.sai (where A.s is the saturation mag
netostriction and ai the mean magnitude of the 
internal stresses), then the second term plays the 
fundamental role in magnetization processes. 

In works of Neel1 and the author2 it has been 
shown that 180° walls are attracted by secondary 
domains toward inclusions; when no external mag
netic field is present, these walls pass through in
clusions3 or are located in regions of greatest in
clusion concentration. The first of these deduc
tions was confirmed experimentally by observa
tion of powder figures on the surfaces of mono
crystals of silicon iron.4 In these investigations 
it was also shown that in a magnetic field the walls 
begin to move, and thereupon the secondary do
mains that are produced around an inclusion be
come extended in a direction at an angle of 45° to 
the plane of the wall, forming a connection between 
the wall and the inclusion (cf. the figure). Hd rep
resents the field intensity at which the wall breaks 
away from the secondary domain and an irrevers
ible jump of magnetization occurs. 
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The surface and volume energies of domains de
pend, as is known, on the components of the strain 
tensor. It follows that external stresses should 
have an effect on the energy of secondary domains 
and thus should affect the value of Hd. The mag
netic state of a crystal in a field H will be stable 
with respect to the elastic forces if the change of 
Hd due to these forces is such that the difference 
Hd- H does not become zero. In the contrary 
case, a crystal in a magnetic field, under the in
fluence of elastic stresses, will undergo irrevers
ible changes of magnetization. 

Calculations of Hd for various cases have al
ready been made,1- 3 but the effect of elastic stres
ses on Hd has so far not been considered. Fur
thermore, in the calculation of Hd no attention 
has been paid to the elastic energy of secondary 
domains, an energy due to magnetostriction. In 
the present work, in calculating the Hd of a 
strained crystal, we shall restrict ourselves to 
consideration of the case in which a tensile or 
compressive force acts along the direction of a 
cube edge parallel to the magnetization of the 
primary domains of the crystal, such as domains 
1 and 2 in the figure. Furthermore, following the 
method used by E. M. Lifshitz5 in calculating the 
domain structure of an iron crystal, we shall sup
pose that the strain tensor is constaht within the 
crystal, since the volume occupied by the second
ary domains 3, formed around the inclusion, is 
small in comparison with the volume of the pri
mary domains magnetized parallel or antiparallel 
to the z axis. In this case the difference of the 
strain tensor components is 

'tzz-+ ('rxx + 'ryy) = 'l:zz- 'txx = + }.100 + 0 / 2C2, (2) 

where A.100 is a magnetostriction constant, C2 is 
an elastic modulus of the crystal, and a is the 
value of the external tensile stress; hence the free
energy density of the secondary domains is 

F = 3}.1ooC2 (1:zz -'txx) = f t-iooC2 + f }.looO· (3) 

The change ~q, in the thermodynamic potential 
cJl = F- HI, referred to unit area of the wall, upon 
displacement of the latter through ~x in a con
stant field H, is 

~ID = [- 2H Is (1- + a2v''•) 

+ a1rav'l• I d + f a 2),100 (3}.100C2 + o) v'l•] ~x. (4) 

where y is the surface energy of the wall at 
a= 0, d is the mean diameter of the inclusions, 
v is their volume concentration, K is the aniso-

tropy constant, and a1 and a2 are dimensionless 
coefficients of order unity, dependent on the form 
of the inclusions. The mean number of inclusions 
per unit area of the wall is v213/ d2. Formula (3) 

is valid under the conditions v « 1 and d > o, 
where o = rr.../ J/Ka0 is the so-called wall thick
ness, J is the exchange integral, and a0 is the 
lattice parameter; for an iron crystal, o ~ 10-5 

em. 
The first term in square brackets in (4) is the 

change of magnetic energy of the volume in the 
crystal that reverses its magnetization on dis
placement of the wall through ~x (the term 
a2v213/2 is a small correction for the volume of 
the secondary domains ) ; the second term gives 
the change of surface energy, and the third the 
change of volume energy, of the secondary do
mains. The minimum values of field, H = Hd, 
and of external stress a for which the wall can 
break away from the inclusion correspond to 
~q, = 0. Hence, discarding the small term a2v2f3/2, 
we get* 

Hd = a1rav'l, I 2/sd + (3a2}.1ool 4/,) (3f-loOC2 + o) v'''· (5) 

For I A.tooO" I « I K I, the value of Ya is :::: y, and 
(5) can be rewritten in the following form: 

d- do . . o , H _ H ( I + ~ A10o ) 
\ 2at 1 1 d + (9a. 1 2at) A~00C2 

(6) 

where 

(7) 

The second term in parentheses in (7) repre
sents a correction connected with the magneto
strictive energy of the secondary domains. For 
iron crystals, % A.f00C2 ~ 103 erg/cm3, y = 1.8 
erg/cm2• Thus for d ~ 10- 4 em, this correction 
amounts to about 10%, and for d ~ 10-5 it is 
practically negligible. The size of the second 
term in parentheses in expression (6) depends on 
a. For a= 109 cgs units= 10 kg/mm2, we get 
%A.100a ~ 3 x 104 erg/cm3• In this case, for d 
~ 10- 4 to 10-5 em we get 3A.100ad/2y ~ 1. It fol
lows that Hd can, in accordance with the sign of 
A.100a, be several times larger or smaller than 
Hdo· On passage through the crystal of an elastic 
wave with amplitude of order 109 cgs units or more, 
Hd will periodically become zero; this will cause 
an increase of magnetization even for insignifi
cantly small external fields H. Thus it is evi
dently possible to explain the phenomenon, well 
known from experiment, of strong magnetization 
of ferromagnetic bodies in very weak magnetic 

*The first term of formula (5) was obtained by the author 
earlier2 by a similar method. 
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fields under the influence of shocks or blows. It 
must be emphasized that, as follows from formula 
(6), the application of external stresses substanti
ally affects the stability of 180° walls, despite the 
still prevalent opinion that elastic stresses for 
H ¢ 0 can produce only motion of walls between 
domains magnetized at an angle different from 
180° (for example, 90° walls). 

In polycrystalline ferromagnets, besides the 
reasons indicated above for an effect of external 
stresses on coercive force, there are a number 
of others, connected with conditions on grain 
boundaries and with the effect of external stress 
on the orientation of axes of easy magnetization. 
We shall not be concerned with these topics here; 
to some extent they have already been treated in 
the literature. 6 -s 

If, as is usual, irreversible changes of mag
netization occur in some field interval, then the 
increase of the irreversible part of the magneti
zation takes the form ~Iir = Kir~H. where ~H 
is the increase in the effective field. From (6) 
it follows that application of a stress u is equiv
alent to change of the field by ~Hu = Hdo - Hd. 
For H ¢ 0 and ~Hu > 0, this leads to an irre
versible change of magnetization 

If H ~ Hd and if A.u « K, then according to 
(2)- (5) 

(8) 

(9) 

Formula (9) permits approximate estimation of the 
irreversible changes of magnetization that occur 
under the influence of external elastic stresses. 

In the most general case, with an arbitrary 
mechanism for the effect of external stresses on 
irreversible changes of magnetization (we con
sidered above only one of the possible mechanisms 
for such an effect), the condition for stability of 
180° walls with respect to a change of stress is 
the vanishing of the field Hi that acts on the wall. 
This field is connected with the external field H 
and with the magnetization by the known relation 

H; = H -v,I, (10) 

where ve is the local demagnetizing factor, de
pendent on the shape of the body and on its struc
ture, in particular on the shape and concentration 
of the inclusions; in the general case Ve is a func
tion of the coordinates of points within the body. 

Apart from the trivial case in which I = 0 at 
H = 0 (the demagnetized state), vanishing of the 
effective field Hi occurs in states for which H 
= vel. Thus the states that have greatest stability 

with respect to u are those with mean magneti
zation 

I= H jv, (11) 

where v is the mean demagnetizing factor of the 
body. 

Experiment shows that in bodies with a suffi
ciently large shape demagnetizing factor N0, so 
that v ~ N0, the stable states described by Eq. 
(11) can be obtained by means of the magnetic 
treatment that leads to "ideal" magnetization. It 
will be shown below that this result follows from 
modern theoretical ideas. 

2. INITIAL MAGNETIC SUSCEPTIBILITY OF 
THE IDEAL CURVE, AND THE DEMAGNE
TIZING FACTOR 

We consider the processes that take place in a 
ferromagnetic monocrystal during ideal magneti
zation. Let the values of the coercive forces in 
different regions of the monocrystal be included 
within narrow limits He min ::s He ::s He max· 
Upon the monocrystal, with an internal demagne
tizing factor, let there act a constant field H 
:::; vis and a slowly decreasing alternating field 
with amplitude h0, directed along an axis of easy 
magnetization; and let the frequency of the alter
nating field be so low that its amplitude and phase 
are approximately the same at all points of the 
monocrystal. 

In the time interval during which the amplitude 
of the alternating field, h0, exceeds He max + H 
+ vis, domain walls move back and forth past an 
inclusion, executing oscillations at frequency w. 
In this process the mean magnetization of the 
monocrystal is zero, and the resultant field Hi 
changes, with cyclic magnetization reversal, be
tween the limits h0 + H - vis and - h0 + H + vis. 
At the instant when h0 becomes less than He max 
+ H +vis, and consequently the absolute value of 
the lower limit of Hi becomes less than He max• 
a part of the walls can no longer move past inclu
sions; there comes into existence a constant com
ponent I0 of magnetization, directed along H, and 
there appears an additional constant component of 
field, equal to - vi0• From this instant on, as long 
as the upper limit remains equal to Is, the mag
netization changes from Is to -Is + 2I0 and the 
resultant field Hi accordingly from Hi1 to - Hi2, 

where 

- H;2 =- h0 + H + Y (Is- 2/0) ~ H; ~ h0 

+ H - vIs = H ir· (12) 

Under these conditions the various regions of the 
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monocrystal can be divided into two groups: 1) re
gions in which He lies within the limits 

(13) 

2) regions in which 

(14) 

In regions of the first group, walls move past 
inclusions twice during each period of alternation 
of h, i.e., even when h is directed opposite to 
the constant field H. These regions obviously 
make no contribution to I0• In regions of the sec
ond group, whose coercive force is larger than the 
lower limit Hi2 of the resultant field, walls cannot 
move past inclusions when the alternating field is 
directed opposite to the constant field. The mag
netization of these regions remains parallel to the 
constant field, since, under the conditions assumed 
for the upper limit of the resultant field, saturation 
is attained (the upper limit of the magnetization is 
equal to Is ) . 

From (12) it is evident that as long as the upper 
limit of the magnetization is equal to Is, the dif
ference between the absolute values of the upper 
and lower limits of the resultant field is 

(15) 

It is easy to demonstrate that (15) remains valid 
as long as H > vi0, i.e., Hi!> Hi2• In fact, while 
the last inequality is satisfied, Hi1 according to 
(13) is always larger than the largest of the co
ercive forces of regions of the first group; this 
guarantees attainment of saturation at field Hi1, 

i.e., attainment of the upper limit of the magneti
zation, equal to Is. 

With decrease of h0, the number of r-egions 
falling in the second group increases, the number 
of regions remaining in the first decreases, and 
the constant component I0 increases. Since, in 
the case we are considering, H < vis, there comes 
in the process of increase of I0 an instant when 
H - vi0 vanishes or changes sign, and when the 
upper limit of Hi becomes equal to the absolute 
value of the lower limit (or becomes less than 
the absolute value of the lower limit). Let this 

instant come at Hi2 = Hco· From this instant on, 
in the process of extinction of h, each successive 
value of the amplitude of Hi will be less in abso
lute value than the preceding (regardless of the 
sign of Hi ) . Therefore in only about half of the 
regions with coercive forces He < H00 will the 
magnetization, on transition from the first group 
to the second, remain parallel to the field H. In 
the other half of the regions, which pass from the 
first group to the second when I Hi2 1 > Hil• the 
magnetization will remain antiparallel to the field. 
Thanks to this, at the instant when Hit and Hi2 
become less than H00 , the increase of the con
stant component I0 will cease, and the upper 
limit of the magnetization will become less than 
Is. 

Thus in the process of decrease of the alter
nating field, the value of Io reaches a limiting 
value Iom• which according to (15) is equal to 

lom=H/v. (16) 

Comparison of (16) and (11) shows that states cor
responding to points on the ideal curve actually 
are the most stable with respect to the effects 
of external stresses. 
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