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An investigation is made of the stability with respect to axially symmetric perturbations, in­
cluding entropy-wave perturbations, of a pinch with a distributed current. 

IT is well known that plasma configurations with 
closed lines of force are particularly susceptible 
to convection or transposition instabilities, corre­
sponding to the transposition of neighboring lines 
of force. 1 In this report we investigate the simplest 
configuration of this type: a straight, axially sym­
metric pinch which is contained by the magnetic 
field produced by the current through the pinch. 
We are interested chiefly in perturbations of the 
convection type, i.e., perturbations that are con­
stant along the lines of force. The equilibrium 
velocity distribution is assumed to be Maxwellian; 
this assumption is valid if the time during which 
equilibrium is maintained in the pinch exceeds the 
time between collisions. The conductivity of the 
plasma is assumed to be infinite. 

1. HYDRODYNAMIC APPROXIMATION 

As has been shown in references 2 and 3, the 
magnetohydrodynamic equations for small oscilla­
tions reduce to a single self-adjoint equation for 
the displacement from equilibrium '17 ( r, t). This 
equation can be obtained2•3 by means of a varia­
tional principle and it is found that a necessary 
and sufficient condition for stability is that the 
potential energy of the small oscillations be posi­
tive. 

We assume that the plasma is inside a conduct­
ing wall and that the radial component TJr vanishes 
at the interface. In this case the potential energy is 

V = ~ ~ { iP(div'l))2 + 1, (curl ['I) x H])2 

+ 'lV p div 7l- ~ ['l rot x curl~ curll'IJ x H]} dr, (1) 

where the displacement along the field due to the 
last two terms in (1) vanishes because the equation 
is self-adjoint. In Eq. (1) p and H are the equi­
librium pressure and magnetic field and y = % is 
the exponent of the adiabat. 

In the case being considered (Hz = 0) the poten­
tial energy (1) for axially symmetric perturbations 
is a quadratic form in the two independent variables 
TJr and div TJ. The condition which must be satis-
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fied if this form is to be positive definite is 

-dIn pjd In r < 4-r/(2 + jE), (2) 

where E = 811p/H2• It is apparent that this condi­
tion also follows from one of the two conditions for 
convection stability .1 

We now consider perturbations that depend on 
azimuth cp. Without loss of generality this depend­
ence can be written in the form 
.,, = .,, (r, z) ccs mq:, 7J"' = "·"' (r, z) sin mcp, 

'tfz = Tfz (r, z) sin mcp. 

In this case, the factors cos2 mcp and sin2 mcp 
appear in Eq. (1); when averages are taken these 
terms yield %. Varying Eq. (1) with respect to 
TJcp gives div TJ = 0, whence 

1 \ { 1 m2H 2 2 2 1 [ 81Jz a ]2 

V = T ~ "4"n-,.-(TJ, + "'z) + ""4"n H az + ar(HTJ,) 

(3) 

Equation (3) is a quadratic form in TJr, TJz and 
BTJr!Br + BTJz/Bz. If this form is to be positive def­
inite the following condition must be satisfied* 

-dlnpjdlnr < m2jE. (4) 

If E < % y, the condition in (2) is stronger; if 
E > %Y the condition in (4) is stronger (with m=1). 
It is interesting to note that in the many photographs 
of contracting pinches it is possible to distinguish 
two regions clearly: an inner region where twist 
perturbations develop (m = 1), and an outer region 
where the perturbations are essentially axially 
symmetric. This behavior is in complete agree­
ment with the conditions given in (2) and (4). 

Writing 

dlnp {-1/s 
dIn r = - 4j I (2 + jE) 

for e > 2/a j 

for e < 2/aj 

*This relation is given in a different form in reference 4. 

(5) 
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and taking account of the equilibrium condition, 
which can be written in the form 

dIn p _ 1 (dIne 2) 
d In r - 1 + e, d In r - ' (6) 

it is easy to obtain the limiting stable pressure dis­
tribution. When y = % this distribution is of the 
form 

e 
p =Po 1-e' r = a(l-s) for s > 0.4, 

( 
€ )'/, 

p=l8.lpo 1+•;4e' r =3.94a 1 +"i•e f 04 or s < . , e:;, 
(7) 

where Po and a are constants of integration. This 
distribution has a singularity as r - 0 and cannot 
be obtained experimentally. However, if there is a 
current carrying metal conductor along the z axis 
it is possible to produce a situation in which the 
plasma is stable close to the axis. In this case, 
as follows from (2) , ( 4) and ( 6), the quantity € 

must be smaller than unity everywhere and the 
rate at which the plasma pressure falls off in the 
radial direction must be small. 

2. KI~ETIC ANALYSIS 

In a high -temperature plasma the collision time 
may become extremely large; in this case the hy­
drodynamic approximation no longer applies. In a 
strong magnetic field it is possible to use the drift­
approximation equations; these are the hydrody­
namic equations for motion transverse to the field 
lines, and the kinetic equation for the longitudinal 
motion.5 In the·case of axial symmetry these equa­
tions are of the form 

02'1) ' r ' ' 
Mn ---af2 = - '\! p 1_- [2 (p 11 - P L) 

+ 4~ curl curl ['tjxH]xH]-j 4
1" curlHxcurl['tjxH]], 

(8) 

of' u at' . a'll u a'll 
(f[ + r ~ --t- ()t Vfo + ,- a;p Vfo 

{ u , Mu 2 1 O'"IJ, Mw2 • O'IJ Mw 2 1 rJ'Il, l 
- TeE'~'--Trat+2Td1vTt -2T-rTtf 

(9) 

Here f0 is the ion Maxwellian equilibrium dis­
tribution function, T is the temperature, Ecp is 
the azimuthal component of the electric field, f' 
is the perturbation on the distribution function, 
pj_ and pj1 are the perturbations of the transverse 
and longitudinal pressures respectively. M is the 
mass, n is the ion density, u is the longitudinal 
ion velocity, and w is the transverse ion velocity. 

We consider perturbations whose aximuthal de­
pendence is of the form eim cp ( m ~ 0 ) and assume 
that the oscillation frequency satisfies the condition 

w « VT /r, where VT is the mean ion thermal ve­
locity. Under these conditions we can neglect the 
time derivatives in Eq. (9) and 

f' = -"fr\lfo-ireE~fo/MT. 

Similar considerations apply for the electrons. The 
field E~ is found from the charge neutralization 
condition; it is apparent, that E~ = 0. Thus, f' 
= - 77Y'f0, whence pfl = pj_ = - 77Y'p0• If this relation 
is substituted in Eq. (8) we obtain an equation which 
coincides exactly with the magnetohydrodynamic 
equation with div 71 = 0, i.e., the stability criter­
ion is ( 4), the same as in the hydrodynamic approx­
imation.4 

We now consider perturbations with axial sym­
metry ( m = 0 ) . In this case Eq. (9) can be inte­
grated with respect to time and we obtain the rela­
tions 

p~ =- 'fjrdP/ dr-2p diVYJ + P'Ylr/ r, 

p'll =- 'f/rdp 1 dr- p div '1j- 2P'fJr / r, (10) 

which coincide with the adiabatic relations obtained 
by Chew, Goldberger, and Low. 6 As has been shown 
in reference 3, hydrodynamic equations with this 
kind of pressure anisotropy can also be obtained 
by means of a variational principle for the paten­
tial energy which, in the present case, is 

2 

V k = ~ ~ {YJr div "1J ~~ + 2p ( div YJ)2 -
2: 'IJr div "1J + 3p ~~ 

1 [H O'IJz a (H >]2 + 41t Tz + ar "')r 

(11) 

The condition that the quadratic form in 1Jr and 
div 71 (11) be positive definite is 

_ dlnp < 7/ 2 + 5ej4 
din r 1 + e • 

(12) 

This condition is somewhat weaker than (2). For 
this reason it is of interest to delineate the effect 
of collisions between particles which lead to equili­
bration of the longitudinal and transverse pressures. 
In order to avoid complications we neglect the dif­
ference between the equilibration times for the 
electron and ion pressures and introduce an aver­
age relaxation time T. If we assume that the total 
energy of the particles is conserved in collisions 
it is apparent that the pressure relaxation is de­
scribed by the relations 

ap ~ 1 , , ap'11 2 , , 
- at = - "3-r (pl.- p II) ' at = - 3-. (p ll - p 1.) · 

(13} 

We assume that all quantities have time factors 
of the form eA.t. Then, taking account of collisions 
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we can write Eq. (10) in the form 

' 1 ' ' dp d" p 
Pj_+ 31.-r (pj_-Pu)=-'f/r([i-2P IV'YI+--r:-'Yir, 

' 2 ' ' dp • 2p 
Pu+ 3,_-r (Pu-Pj_)=-'f/rT,-pdtV"Ij-lf'Yir· (14) 

If the quantities pj1 and pj_ are determined in 
this way and substituted in Eq. (8), neglecting the 
inertia term on the left side we obtain an equation 
which can be regarded as the Euler equation for 
the variational problem o (Vk + V/"AT) = 0, with 
a characteristic value of zero, i.e., the solution 
satisfies the equation 

Vk+VIf..-c=O. (15) 

Here Vk is given by Eq. (11) and V is given 
by Eq. (1). It follows from Eq. (15) that "AT is 
real. 

Now suppose that the energy Vk is positive, 
that is to say, the plasma is stable in the absence 
of collisions. Then, if V is positive, (15) has only 
the damped solution with "A< 0; if V is negative, 
of the extremum values of the functional F = Vk 
+ V /"AT there is one which vanishes when the pa­
rameter "AT changes from 0 to oo • This means 
that Eq. (15) has a solution with the increment 
"A,.... 1/T > 0. Thus, the two modes (the dynamic 
mode and the one associated with collisions ) given 
by the kinetic equations for the small oscillations 
yield a stability condition which is exactly the same 
as the hydrodynamic stability condition. 

3. DRIFT INSTABILITY OF A PINCH 

Tserkovnikov7 has shown that under certain 
conditions there can be an increasing solution for 
oscillations whose phase velocity is of the order 
of the drift velocity of the particles. Since it is 
difficult to delineate the physical significance of 
the drift instability in the kinetic analysis given 
by this author, we consider the problem here by 
means of the hydrodynamic equations, in which 
quantities of order p/r are retained, where p 
is the ion Larmor radius. Thus, in the heat trans­
fer equations we introduce the thermal drift of the 
electrons (a = e) and ions (a = i )8 

q« =- (5naT a I 2ea.H2 ) [H vT a]' 

but neglect the usual thermal conductivity and vis­
cosity, assuming that the frequency of collisions 
between particles is much lower than the cyclo­
tron frequency of the ions and that the wavelength 
of the perturbations is much larger than p. We 
also assume that the Debye radius is much smaller 
than all the characteristic lengths so that the charge 
neutralization condition is satisfied (ni = ne = n). We 

also assume that all quantities vary as exp (--- iwt 
+ ikz) so that the linearized equations of continuity 
are written in the form 

n' = - div (7jn) = - div (n;) + (kv0 I w) n'. (16) 

Here n' is the perturbed density, f/ is the ion 
displacement, ~ is the displacement of the elec­
trons from the equilibrium position 

V0 = (c I eHn) dp I dr 

and the equilibrium drift velocity of the electrons 
results in a current flow along the axis of the pinch. 

The equations of motion are the Euler equation 

- w2nMTj + v p' = 4~ ~uri H' x H) + 4~ @uri H x H'] (17) 

and the equation of momentum transfer for the 
electrons, in which we neglect the inertia term is: 

1 ' n' , e , iwe 1: H - vp.--2. V'P =-eE -- [voxH I+- [.,x ]. n n c c (18) 

The linearized heat transfer equations are8 

' dT 2 , i , , 
w (Te + er dr + 3 T div;).-- kv0T, + 2-r (T,- T;) 

_ 5 kT.' 1 d ( rncT) 
- - 3 -n- r dr ----eJf" 

5 kcT dT ( n' Te' H') + 3 eH (if n + ----;y-- 7T ' (19) 

I dT 2 i ' ' 
w (T; + 'Y/r Tr + 3 Tdiv Tj) + ~ (T;- T,) 

= ~ kT'; _1_ !!_ (rncT) _ ~ kcT dT (!!:.._ + T/ _ ~) 
3 n r dr eH 3 eH dr n T H ) • 

(20) 

Here the last term on the left side takes account 
of the heat exchange between electrons and ions and 
T is the characteristic time for temperature equili­
bration. 

Equations (16)- (20), together with Maxwell's 
equations 

curl H' = (4rre I c) {-n'v0 + iw(~- "'/) n}, (21) 

curl E' = (iw 1 c) H' (22) 

represent the complete system of equations for the 
1;3mall oscillations. 

If we neglect the magnetoacoustic oscillations 
the inertia term in the z component of (17) can 
be neglected so that 

p' + H' HI 4rr = 0. (23) 

Equation (23) and the radial component of (17) 
yield 

(24) 

From (21), taking account of (16) and (23), we 
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have 
e,-r. =~p'. 

•' ewnH ' 

div (= -'rl) = ~ .!i_-~ !!!!_ '. 
ll • w n weHn2 dr P 

(25) 

Using (23)- (25), we reduce the remaini'lg equa­
tions to a system of three algebraic equations 

T' { ( 2 e \ } 6 (v-q)y + 2+ 5 +-z)q-s T 

(26) 

~ (2 + T q) ~~ + (v -)- ~-- q) ~ - ~ ~ s I~'_= 0; (27) 

(v- q) ~ + (q- s) ~ + {- v( 1 -)- ~)- 4 -i s 

+ __!:__ l2 + (1 + --=-) q- s]} L = 0. (28) 
vk2p2 2 p 

Here 

s=dlnTidlnr, v=weHrlkcT, 

-r* = -rl?cT I eHr, p = VT Mc 2 1 e2H2 , 

and p is the mean ion Larmor radi_us. Equation 
(26) is half the sum, and (27) is half the difference, 
of the heat transfer equations (19) and (20). Equa­
tion (28) is obtained from (22) by substitution of 
the electric field from (18). The requirement that 
the determinant of the system (26)- (28) must van­
ish gives a dispersion equation of the fourth degree. 
Since the coefficients of this equation are functions 
of r while the frequency can be considered inde­
pendent of r, the perturbations must be localized 
with respect to r; strictly speaking they are 6-
functions. We assume that the wavelength of the 
perturbation is much smaller than the ion Larmor 
radius kp « 1; thus in the dispersion equation 
there 1s a large coefficient 1/k2p2• In this case 
the two roots are large (of order v "' 1/kp), and 
we obtain the values 

2 2p { d In p 4j } 
w ~ Mnr dlnr + Z+re ' (29) 

where y = % . This is obviously the frequency of 
the convection oscillations and the condition w2 > 0 
coincides exactly with (2). 

The other two roots are of order unity and are 
determined'by the equation 

( 1 i ) ( ) 2 (4 + eq)2 
v- q ' -c* v- q = "( 4j + q (2 + re) 

(30) 

If (2) is satisfied, the following condition must 
be satisfied if the imaginary parts of the roots of 

(3) are to be positive: 

dlnTfdlnr< 1 +C/10 + sf4)dlnpfdlnr. (31) 

In the case of small curvature ( r - oo) this condi­
tion becomes the condition dlnT/dlnp < 1fto + €/4, 
which has been obtained earlier by Tserkovnikov 
and represents the hydrodynamic analog of one of 
the conditions obtained in reference 7 by means of 
the kinetic equation. The condition in (31) shows 
that for a given value of dlnp/dlnr, the tempera­
ture cannot increase too rapidly with r and that 
for a given temperature gradient the pressure must 
not fall off too rapidly with r. 

It is interesting to note that when d ln TId ln r 
= 0, the condition in (31) becomes (2) (with y =% ). 
Thus, the drift thermal conductivity leads to a more 
stringent stabili.ty condition than the usual condition; 
when this is taken into account we arrive at (2) with, 
y = 1 (the isothermal condition). 

According to (26) - (28), when v "' 1 we have 
p'p"' (kp) 2 T' /T « T'/T"' BT, i.e., the oscilla­
tions represent entropy waves, or a perturbation 
of the temperatures T e and T i at constant pres­
sure. Because of the particle drift these waves 
propagate along the axis of the pinch and the plas­
ma, in accordance with Eqs. (24) and (25), executes 
radial oscillations 7Jr ~ h "' rT' /T which com­
pensate for the change in pressure by virtue of 
the drift thermal conductivity. 

If (31) is not satisfied these oscillations increase 
without limit and this causes heat transfer along the 
radius until the temperature gradient is reduced to 
values given by (31). 

It should be noted that the temperature differ­
ence between the electron temperature and ion 
temperature is of importance in these oscillations 
because e -0 when T*- 0 and {30) has only one 
root beside the real root v = q. 
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