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A method is proposed for the exact calculation of integrals over momentum space in the 
covariant statistical theory of the multiple production of particles. The method can be 
applied in other types of theory, though the calculations become more complicated. Ap
proximate and exact calculations are carried out. 

SRIVASTAVA and Sudarshan1 have proposed a co- After the integrations over the angles and some 
variant formulation of the statistical theory of the simple transformations we get 
multiple production of 1r mesons, In this formula- oo "' 

tion the probability of the production of n particles I = 2-(2+nl 1t11- 3 d) 2"-4 ~ dz ~ da. i-n i" I~, (4) 
of arbitrary masses mi is proportional to an in- o -oo 

tegral over energy-momentum space, where 

I = ~ Il d4k1 o (kJ + mJ) o4 ( ± k,- p), (1) 
i=1 1=1 

where k is the four-momentum of a meson (k4 
= iE) and P is the momentum of the system (in 
the center-of-mass system P = 0, P 4 = icb ).* We 
shall discuss a method for performing the integra
tion of Eq. (1). 

After integrating over all the k(i we get 

(A similar form is found in the integral that ap
pears in the quantum-field treatment of the proc
ess, if the wave functions are normalized to Efl/2• 

We have under the integral sign the remaining part 
of the matrix element, but at high energies it is ob
viously almost constant. 2 ) The integration in (2) 
can be carried out by a method similar to that de
vised by Lepore and stuart. 3 Using the Fourier 
representation for the o function, we bring (2) to 
the formt 

I = 2-n (21t)-4 ~ d3r dt /0'1 

00 

X[~ dk ~ drpd (cos 8) k: ei(kr cos e-El) r (3) 
n 

*We are setting 11 = c = m7T = 1 (m7T is the mass of the rr 
meson). 

tin (3)-(7) it is assumed for simplicity that all the par
ticles are rr mesons. 
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"" 
I 1 =~sin (z V y2- p,2) i•Y dy, 

II. 

yz=p,2(k2+1), p,=!;d), a=td), z=rd). (5) 

Obviously y represents the total energy, and J.t 
the rest energy, of a meson. Consequently y:::: J.t, 
and for y ::::; J.t the integrand can be set equal to 
zero, after which the integration can be extended 
from 0 to oo, and we can use the formulas of the 
Laplace transformation,' defining the original func
tion as 

f (p.) = {sin (z Yy2 - p.2), 

0 ' 

Then 

(6) 

where K1 (x) is the Macdonald cylinder function 
[K1 (x) == -!1rHP>ox)]. 

Thus the calculation of the quantity (1) reduces 
to the calculation of the integral 

lz=r dz ~ da z•i• "12[K1(p.Vz2 -a2)]". (7) 
o -oo (z2 - a2 ) 

The calculation of integrals of this form encounters 
difficulties5 and is usually done approximately. In 
the extreme relativistic case the calculations can 
be carried through to the end. For this case we can 
set ~-t 2 == 0; then 

(8) 
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By displacing the poles in a suitable way, we can 
perform the integration by the method of residues. 
Integrating first over z and then over a, we get 
finally 

I= [21-n ltn-1 I (n-1)! (n-2) !] c!J2n-4. (9) 

Thus for n = 2 the integral I does not depend on 
the energy, for n = 3 we have I~ cB2, and so on. 
Exact computations show that for n = 2 the approx
imate value (9) is useful for practical purposes for 
arbitrary energy, and for n = 3 it is good for ener
gies cB > 2.5 x 109 ev (i.e., for kinetic energies in 
the laboratory system larger than 1.45 x 109 ev). 
For n = 4, 5, and so on, the threshold for the use
fulness of (9) increases, so that exact computation 
is necessary. 

The exact calculation can be carried out in the 
following way .2 Integrating over k1 in (2) and tak
ing account of the 6 function of the momentum we 
get 

Here 

E1 = (k~ + 1) '/z = [Pn-2 + k2 + 2 (Pn-2 k2) + 1 ]'!., 
where 

n 

(10) 

Pn-r = ~ k;, Pn-r = [P~-r-1 + k~+I + 2 (Pn-r-1 kr+I)J'1'. 
r+l 

For the further integration over k2 we go over to 
spherical coordinates, taking the polar axis along 
the momentum Pn _ 2• After the integrations over 
the polar angle 82 and the azimuth cp 2 we get 

For the integration over k3 we take the axis of 
spherical coordinates along Pn _ 3; using the fact 
that 

we integrate first over cos e3 (we take the inte
gral in the sense of the principal value, since Pn _ 2 

can pass through the value zero). It is not hard to 
show in this way that in any case the integral (11) 
reduces to the form 

I=+ (2~tt-1 ~ IJ (eJ- m~)'1• de; de3 ds2 • (12) 
i=4 

Here the 71' -meson mass (m71' = 1) has been re
placed by masses mi; thus the formula holds for 
the produeltion of particles of arbitrary masses. 

It is convenient to go over to the kinetic ener-

gies Xi = Ei -mi. The expression (12) then takes 
the form 

n 

I= ~ (2~tt-1 ~IT (x~ +2m; x;)'1• dx; dx2 dx3 • (13) 
1=4 

In Eq. (13) we must perform (n -1) successive in
tegrations. Let us find the region of integration, 
taking account of the existence of a maximum 
energy for each of the particles.6 

The kinetic energies of the particles lie in the 
ranges 

(14) 

where 

£ M 2 - mJ T ( M - m1 ) ( 
it =2-~·-m;=T 1 +T+M+m; . 15) 

Here M is the sum of the rest masses of all the 
particles except the one in question, and T is the 
kinetic energy of the systt. , : 

n n 

T = c!J- ~ m1 = ~ x1• 

i=l i=l 

From these equations there follow the relations 
n 

T- i; < h X; = T n-1 < T, 
2 

T-Tn-a-ti<x2+xa <T-Tn-a· (16) 

Let us consider for simplicity the case in which 
m1 = m2 = m3 • Simple arguments show that the in
tegral over x2, x3 is equal to the area of the en
tire triangle shown in Fig. 1 for T n _ 3 :::: T - t1, 

FIG. 1 

and for T n _ 3 :::= T - t1 it is equal to the area of 
the shaded region. The areas in question are easily 
calculated, and the further analysis of the limits of 
integration in terms of the relations (14) - (16) also 
presents no difficulty. 

For n = 3 we have Tn_ 3 = 0, and because 
t1 :::= T we find that I is simply equal to the area 
of the shaded region multiplied by ~; that is, 

3 

I = +1t2 [P-~ (T- t1) 2J (17) 
i=l 
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[for n = 2 we have I= 1r(!- d:)-2 )l/2 ]. 

For n = 4 we have Tn_ 3 = x4, and the expres
sion (13) breaks up into two terms* (x4 ~ T -t or 
x4 ::::: T - t), in which the integrand contains the 
product of (xi + 2m4x4 / 2 by the value of the cor
responding area (as a function of x4 ). Thus, on 
making some transformations, we get 

t 

I = ~t3[~(T- x4) 2 (x! + 2x4)'1• dx4 

0 

T-t 

-3 \ (T- t- x4) 2 (x! + 2x4)'1• dx4] 
0 

= 1t 3 {[T (T- t)3 + f (T- !)2 - f (T- t)- ~5 ] 

XI(T- t) 2 + 2 (T- t)]'1•- !(t T- T t + :2 ) (!2 + 2t) 

- (f T2 + T +f) (t + 1)][ t 2 + 2t]'1• 

+ f ( P + 2T + i-) In [t + 1 - (t2 + 2t) '1•] 

-f!(T-t)2 +2(T-t)+Tl 

X In [T- t + 1 -((T- t)2 + 2 (T- t))'1']}. (18) 

For n = 5, Tn _ 3 = x4 + x5; the integral over 
x2 and x3 will be equal to the area of the triangle 
or the truncated triangle {Fig. 1), depending on 
whether x4 + x5 ~ T -t or x4 + Xs ::::: T -t. As can 
be seen from Fig. 2, in the first case the region of 

t41-----.--, 

T-t-Tn-s t5 Is 

FIG. 2 

integration over x5 and x 4 is the unshaded part of 
the rectangle, and in the other case it is the shaded 
part (in this case Tn _ 5 = 0; we always have 

*We consider for simplicity the case m1 = m2 = m3 f, m4 

(m4 = 1). 

T- t- Tn _ 5 < t 5 ). For I we get the expression 
{mi = 1): 

t, t .. 

I= 2~t4 ~ dx5 (x~ + 2m5JC5)'1• ~ (x: + 2m~x4)'1• (T -x4-x5)2 dx4 

0 ~ 

3 , T-t 

- 2~t4 ~ ~ dx5 (x: + 2m5x5) •;, 
i=l 0 

T-t-x, 

X~ dx4 (x: + 2m4x4)'1'(T- x4 - x5 - t,) 2 • (19) 
0 

It is obvious that a similar analysis of the limits of 
integration can be extended without difficulty to the 
case of large values of n. 

The limits of the integrations can thus be found 
for arbitrary n and for arbitrary concrete types 
of particles. The integration itself, however, be
comes steadily more complicated. This method of 
integration over the momentum space can also be 
applied in other theories of multiple production, 
but the integration itself is more complicated be
cause of the changes of the forms of the integrands. 

It must be noted that in the covariant statistical 
theory the angular distribution is symmetrical. 
The matrix element, which has not been taken into 
account, is obviously responsible for the experi
mentally observed unsymmetrical distribution. 

The writer thanks Professor D. D. Ivanenko for 
his interest in this work and for a discussion of the 
results. 
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