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The nucleon + core model with intermediate coupling between the nucleon and the phonon exci
tations of the core has been considered in a number of papers1- 5 as a possible way of describing 
the spectra of odd nuclei in the atomic weight region where even-even nuclei have level spectra 
similar to that of the vibrational quadrupole excitations of the nuclear surface (phonons ). The 
state of the nucleon + core system is a superposition of nucleon states and core states with vari
ous numbers of phonons. The energy levels and the wave functions of the system have been de
termined approximately by diagonalizing the energy matrix, which is cut off at a certain number 
of phonons, N. The convergence of the approximations for various cutoff values N is investi
gated on the simple model of spinless photons, which leads to an energy matrix which retains 
the main features of the matrix for phonons with spin. 

INTRODUCTION 

THE level spectrum of even -even nuclei in the 
regions 60 !5 A !5 150 and 190 !5 A !5 214 has the 
characteristic features of the vibrational spectrum 
of the quadrupole excitations of the nucleus :1 1) the 
ratio of the energies of the second and first excited 
states, E2 /E1, is close to the value 2; 2) there
duced probabilities for E2 transitions exhibit a 
collective character; 3) the intensities of the M1 
transitions are below the estimates given by the 
single-particle model; 4) the reduced probabilities 
for the "crossing" E2 transitions are smaller than 
the probabilities for E2 transitions between adjacent 
levels. 

The model of vibrational quadrupole excitations 
of the nucleus predicts three degenerate states with 
spins I= 0, 2, and 4 for the second excited level. 
If the conditions of adiabatic motion of the nucleons 
of the core and collective motion of the core are 
violated, this degeneracy is removed. At present 
three levels are known for Cd!l0 and Hg~58 . 

For the case of the adja~ent odd nuclei it is nat
ural to try to apply the nucleon + core model for the 
description of the level spectrum of the nucleus. 
This model has been considered earlier by anum
ber of authors1- 6 and is now regarded as one of the 
possible descriptions of the odd nuclei. 7 

In the framework of this model the state of the 
nucleon + core system is given by a solution of the 
Schrodinger equation with Hamiltonian1•3 

730 

H = H vibr + H single + fj cplg . (1) 

Here 

Hcptg=- k ](X2t-ty21-t(fl, cp), 
1-t 

fi single= - (n2/2M) 6 + U (r) (3) 

Hsingle is the Hamiltonian of the nucleon in the 
field of the nuclear core, U ( r). For U ( r) one 
takes either the radially symmetric potential of 
the Nilsson type8 or the optical model potential. 
a 2p, are the deformation parameters of the surface 
of the nucleus, 

k is the coupling constant of the interaction of the 
nucleon with the nuclear surface; it can only be esti
mated within a particular model of the motion of 
the nucleon in the deformed nucleus. Thus we have, 
for a nucleon in a rectangular potential well with 
depth UQ and with a deformed surface, 1 

Hcplg=- UoRo'f1 (r-Ro)_l}(X2~-ty2~-t(fl, cp), 
fl. 

after averaging over the state of the nucleon with 
quantum numbers njp,j, we obtain 



ON THE NUCLEON +CORE MODEL OF THE NUCLEUS 731 

Hence 

k = U0R~! Rni (R0) 12 = 40 to 50 Mev. 

It follows that the dimensionless coupling param
eter K = kv'tiw 2C2 /tiw is not small, and that 
perturbation theory with respect to K cannot be 
applied if tiw and the stiffness C2 are small: 
C2 "' 20 + 60 Mev, tiw r:::: 0.2 to 0.8 Mev. 

One usually seeks the solution of the Schrodinger 
equation for the system in the form of an expansion 
in terms of core states xKf..tA. ( v is the number of 
phonons, and A. and f..tA. are the angular momen
tum and its projection on the axis of quantization): 

(4) 

[ IJ!jf..tjn is the function of the nucleon in the spheric

ally symmetric field U(r)]. The amplitudes a:: 
are then determined by diagonalizing the energy 
matrix. 

Approximate solutions of the equation Hlj! = Elj! 
were found in references 1, 3, and 5 by cutting off 
the energy matrix at a certain number of phonons 
and assuming that the nucleon moment j is a good 
quantum number. The cut-off was carried out at 
the values N = 1, 2, and 3. Since the validity of 
the model depends on the comparison of the ex
perimental data with the results of the model, 
there naturally arises the question of the accuracy 
of these approximations and to what extent the ob
tained results can be used in the analysis of the 
experimental data. 

THE NUCLEON +CORE MODEL WITH SPINLESS 
PHONONS 

The investigation of the convergence with re
spect to N for matrices with phonons with spin 
is difficult, because the state IJ!IM for a given 
number of phonons v has contributions from sev
eral states with different A.. The rank of the ma
trix is, therefore, considerably greater than N. 
For this reason we consider the process of appro xi
mation on the simple model of spinless phonons. 
The energy matrix in this model, however, retains 
the basic features of the matrix for phonons with 
spin. As model Hamiltonian we take 

flo=~ (qct + ctq) -x(q+ +q), (5) 

i.e., we assume that the state of the "nucleon" does 
not change. This is equivalent to the assumption 
that n and j are good quantum numbers. Here 
q + and q are the creation and a:nnihilation oper-

ators of the "phonons" and K is a dimensionless 
parameter which characterizes the coupling of the 
nucleon degree of freedom with the "phonons". The 
exact solution for the Hamiltonian (5) is known: we 
introduce the new phonon operators p = q- K and 
p+ = q_+- K, and obtain 

Ho=~ (j/p + pp+)-x2, E, = nws, = nw[i+ }-x2]. 

We are, however, not interested in the exact value 
of the energy level Ei, but in the process of ap
proximating Ei by cutting off the energy matrix 
at the number of phonons N. 

We therefore expand the '111 function of the sys
tern into a series in terms of states of the core: 

'¥1 = ~a~x_., where X• = (q+)•x.o!YVi, 

Xo is the "vacuum" wave function. 
Substituting the series >IF = L) avxv in the 

v 
Schrodinger equation H0 >IF = E >IF, we obtain the 
energy matrix 

(v-s)a.-x }/v + 1 av+1 -x }/va._1 = 0; (6) 

here the factor ! is included in E, so that for 
K =·o (free oscillator), Ev = v. We regard equa
tion (6) as a recurrence relation for the coeffi
cients a 11 • Choosing a0 as the independent co
efficient, we find all a 11 successively in terms 
of a0: 

where 
fv+1 (s) = (s-v)f.-vx2fv-1 ; 

fr (s) = s. 

(7) 

(8) 

Cutting off the matrix (6) at a certain phonon 
number N corresponds to the equation aN+l = 0 
or fN+i = 0. From this we find N+l roots, 
Ei(N), which are the eigenvalues of the Hamilto
nian in the given approximation. For each root 
E i ( N ) we find the set of amplitudes ai ( N) which 
determines the wave function of the i-th state. As 
is seen from (8), the essential coupling parameter 
is not K, but K2; we therefore carried out calcu
lations for K2 = 0.5, 1, 2, and 3. The roots Ei(N) 
for each K2 were found graphically by constructing 
the corresponding polynomial fN+i (E). There
sults of the calculation of the energy levels for the 
ground and first three excited levels are given in 
the figure. 

To illustrate the convergence process with re
spect to N, we list in Tables I to IV the ampli
tudes of the wave functions of the system in the 
first excited and ground states for the parameter 
values K2 = 1 and K2 = 3. The calculations were 
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Dependence of the energy levels ei on the number of phonons N for various values of K2 • 

carried out with slide rule accuracy. As is seen 
from the tables, the coefficients of the wave func
tions have appreciable magnitudes in the interval 
N = 1 to 5. The ai ( N) become smaller by an 
order of magnitude only for v ~ 5. The solution 
given by the cut-off matrix can therefore only be 
close to the actual solution for N ~ 5 or 6. The 
errors in the calculation of the matrix elements 
of operators with functions obtained from an en
ergy matrix cut off at N :::::: 3 may be large, es-

pecially in the case of operators which are pro
portional to qq, q_+q_+, qq+ and higher powers 
of the operators q and q +. 

The approximation Ei ( N) to the exact value 
Ei ( oo) can, at least in the region L:..N :::::: 5, be ex
pressed by the exponential function 

s;(N)- e:;(oo) = 0; (N) == o?exp {- OC; (N- N~)}; (9) 

N~ and 6~ are indicated in the figure for K2 = 1. 
For 6~ we have the relation 
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TABLE I. Amplitudes at (N) for Eo with K2 == 1 
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N .. a, a, a, a, a, 

1 -0.62 0,85 0.53 - - - -
2 -0,86 0.72 0.62 0.31 - - -
3 -0.96 0.65 0.62 0.40 0,17 - -
4 -0.99 0,63 0.62 0.42 0.22 0.067 -
5 -1.0 0.60 0.60 0.43 0.:15 0.12 0.054 

TABLE ll. Amplitudes at ( N) for E1 with K2 == 1 

N ., a, a, a, a, a, a, a, 

-

1 1.62 0.53 -0,85 - - - - -
2 0. 77 0.66 -0,5i --0.56 - - - -
3 0,32 0,68 -0.22 - 0.58 --0.39 - - -
4 0.14 0.66 -0.09 -0.52 -0.49 -0.25 --- -
5 0.05 0.63 -0.03 -0.1!7 -0.50 --0.33 -0.13 -
6 0.013 0.61 -0.008 -0.47 -0.50 -0.37 --0.22 -0.095 

TABLE III. Amplitudes at (N) for Eo with K2 = 3 

N .. a, a, a, a, a, a, 

I 

1 -1.3 0.91 0.40 - - - - -

2 -2.0 0.81 0.54 0.19 - - - -

3 --2.44 0.73 0.59 0.31 0.13 - - -

4 -2.70 0,68 0,61 0,37 0.17 0,054 - -

5 -2.86 0.62 0,60 0.39 0,20 0,084 0.025 -

6 -2.92 0,62 0.60 0,42 0,23 0,10 0.04 0.012 

TABLE IV. Amplitudes a~(N) for E1 with K2 = 3 

N ., a, a, a, a, a, a, a, 

1 2.3 0. 79 -0,61 - -- - -- -
2 0.70 0.94 -0.22 -0.24 - - - -
3 -0.20 0.96 0.065 -0.21 -0.12 - -- -
4 -0.86 0,95 0.27 -0.10 -0.13 -0.06 - -
5 -1,30 0.91 0.39 0.00 -0.11 -0.08 -0,03 -
6 -1,54 0,87 0.44 0.061 -0.16 -0.14 -0.07 --0.02 

TABLE V 

"• 

1.0 0,80 0.75 
'1,5 0, 75 O.fl5 
2.0 0.70 0.55 
3,0 0,55 0,40 

(10) 

The values of O!i ( K2 ) and tan cp ( K2 ) are listed in 
Table V ( 0! is the average value of the parameter 
O!i over the four energy levels ) . In view of the 
crudeness of the calculation of the energy levels, 
the values of O!i and tan cp reflect only qualita
tively the behavior of the energy matrix. 

It follows from Table V that the convergence of 

"-• "• tg q> 

0.70 0,60 -0.70 1.50 
0.55 0.50 -0.60 1,75 
0.45 0.40 -0.50 1.90 
0.40 - -0.45 2,20 

the energy matrix with respect to the number of 
included phonons, N, becomes worse as K2 and 
the index of the level, i, increase, since the ex
ponent O!i ( K2 ) decreases while o~ becomes larger 
(the error in the term E0 of the energy reaches the 
order tiw/2 for cutoff at N = 3 and K2 = 3). 

This simple model of phonons without spin per
mits us to make some qualitative remarks about 
the more realistic model with phonons with spin 
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as well, since the energy matrix retains its oscil
latory character even in this case. 

For simplicity we restrict ourselves to a model 
in which the state of the nucleon does not change, 
i.e., the principal quantum number n and the total 
angular momentum j of the nucleon are good quan
tum numbers. The state of the system is described 
by the function 

'Y1M = ~a~{n ~ C~~Afl.l.<jiifl.jnX~ILA. (11) 
vA ll;iiLA. 

For the matrix elements of the operator Hcplg of 
(3) (see, for example, reference 3) we have, after 
some transformations, 

(j, v}., I M / H cplg ij, v'}.', I M) 

= - k v 21~ :n [C;gloU (2ljlj2; lj)J 

X {< v}.ll ~II v'}.') U (lj}.'2; }.j)} V 'I+- I Ov+I. ,.. (12) 

Here u ( a{3yo; Ecp) is the Racah function (see, 
for example, reference 9). The reduced matrix 
element < vA.Il f311 v'A.' > has the order of magni
tude ...., ! to 1. 

The effective coupling constant between the pho
nons and the nucleon is given by 

where 

x = k V(5j4Tt)(1iwj2C2)!1iw, 

{c;gto u (2ljlj 2 ; l j)} 2 

_ I (I + 2) (21-1)/(21 + 3) (21 + 1)2 for j = 1 + Ij2 , 

- (12 -1)/(21 + 1)2 for j = 1- 1i 2 . 

Introducing the matrices 

{rv. v+I};u· = (vA II~ li 'I+ !}.') u (Ij}.'2; j}.), 

(rvv-dn· = <v- !}."// ~ 11 v}.> u (lj}.2; j}.") 

(13) 

and the state vector a 11 with components a 11A_, 

we write the energy matrix in a form similar to 
equation (6): 

(14) 

The analysis of this matrix is considerably more 
difficult than in the case (6). However, utilizing 
the similarity in the forms of the matrices (14) 
and (6), we can apply the results obtained earlier 
for qualitative estimates in this case. 

Let us consider the particular nucleus CdU1 

(reference 6). For the even -even nucleus CdU0 

we have liw = 0.656 Mev and C2 =58 Mev; the 
odd nucleon can be in the states 3s1/2, 2da;2• 2d5/2• 
1g7; 2• and 1h11.;2. The corresponding constants 
K~ff are equal to: 

States: 3s1f2 21P/2 2d5/ 2 ig7/2 1h11/2 
K!rr 0 1.60 1.80 2.5 2. 7 

The number of phonons, N, to be included in the 
energy matrix is determined by the accuracy re
quired for the position of the energy terms. 

If the admissible error in the position of the 
term is equal to .6., the required number of pho
nons can be estimated from the relation 

(15) 

For K~ff we must take the largest among all pos
sible values. 

If j is not a good quantum number, all nucleon 
states with the same parity are combined into a 
single energy matrix. The convergence of this 
matrix with respect to the included number of pho
nons is determined by the largest value of the coup
ling constant for nucleon states with the same par
ity. In the case of CdU1 the largest coupling con
stant for even states is K~ff = 2.5. This constant 
corresponds to the exponent a ~ 0.5. If the spec
trum is to have an accuracy of the distance to the 
first excited level, E1 = 0.247 Mev, we must in
clude at least four phonons. 

If the accuracy is increased (.6. = 80 kev, N ~ 6; 
and for .6. = 20 kev, N ~ 9 ) , the number of phonons 
is higher. 

In the case of Cd110 •111 we used the values for 
liw and C2 quoted in the well known review ar
ticle of Bohr, Mottelson, et al. 6 These values 
were obtained -by fitting the experimental data on 
the Coulomb excitation of the nuclei in the frame
work of the hydrodynamic theory of vibrational 
excitations of the nucleus. On the whole, the hy
drodynamic theory contradicts the experimental 
results, so that the question of the structure of 
the vibrational excitations of the nuclei remains 
open. The abovementioned example of Cd110 •111 

must, therefore, be regarded only as an illustra
tion of the convergence process for the energy 
matrix with respect to the number of phonons. 

In conclusion I sincerely thank S. T. Belyaev, 
B. T. Gellikman, and L.A. Sliv for their interest 
in this work. 
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