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Photon-nucleon scattering due to strong interactions is treated taking into account the ex
change of a single 1r meson. The scattering matrix is computed for values of angular mo
mentum up to J = % . The angular distributions for reactions involving polarized particles 
are presented. 

1. SCATTERING MATRIX IN THE ONE-MESON 
APPROXIMATION 

As was shown by Okun' and Pomeranchuk1 in 
peripheral interactions, when in effect the particles 
exchange the smallest possible number of pions, it 
is possible to use contemporary meson theory to 
calculate processes involving large orbital angular 
momenta. 

Photon-nucleon scattering in the one-meson 
approximation is described by the diagram shown 
in the figure. The matrix element for this process 
may be written as 

M rg. v;- (u2)5Ul) m 
= (21t)2 w [(k2 - k1) 2 -P.2] E1 

x{ed(n1- n2)x;d} 8(4) (k1 + P1- k2- p~), (1) 

where ~ is the photon unit polarization vector, k 
and p are the photon and nucleon momenta, w 
and E are the photon and nucleon energies, n1 

and n2 are unit vectors in the direction of motion 
of the initial and final photon, JJ. is the pion mass, 
r is the vertex function ( yy1r0 ) , the subscripts 1 
and 2 refer to initial and final particles and units 
are used such that 11 = c = 1. The expression is 
written in the center of mass coordinate system, 
hence k1 = -p1 = wn1, ~ = -p2 = wn2 ; the z axis 
is chosen in the direction of n1 and u1, u2 are 
unit spinor amplitudes. 

The scattering amplitude which determines the 
probability for the transition from the initial state 
(when the photon has momentum k1 and prescribed 
polarization and the nucleon has momentum p1 and 
prescribed spin projection onto the z axis ) to the 
final state (when the photon has momentum k2 and 
prescribed polarization and the nucleon has momen
tum p2 and prescribed spin projection onto the z 
axis ) is given by the expression 

f (6, cp) = C {v;a (n1- n2) v1} {e2 •[(nl- n2)xe1n I (x- cos 6), 

C=fgJiitj8rrw(E1 +w), X= I +p..2 j2w2 , (2) 

.... 
/ ........ .... .... ... .... , ............ .... .... ........ 

Here fJ is the angle between n1 and n2 in the 
center-of-mass system, and v1, v2 are unit 
spinors. 

To separate out large angular momenta we go 
over to the angular momentum ·representation. In 
this representation the state of a system consisting 
of a photon and a nucleon is specified by the total 
angular momentum L and parity A of the photon, 
by the spin of the nucleon, and by the conserved 
quantities J, MJ and II. Here J is the total 
angular momentum of the entire system, MJ is 
its projection on the z axis, and II= (- )Lt+At 
= (- )L2+A2 is the parity of the entire system. The 
scattering amplitude in this representation 
R ( L2A.2; L1 A.1; JII ) is related to the scattering 
amplitude f(fJ, cp) by:2 

f (0, cp) = c v-; 23 R (L2t.2; Ll/..1; JII) iL,+A.-L.-A, 

JL,A,L,At 

xY2L +I X ' 1 (-M )1+A•CJMJ (- l)A,+A,(·X ~) 1 L.J 1 L 1M.'!tiL1 M, 1 

(3) 

where o/2 ( JMJ L2A.2) is the function describing the 
state of the system with total angular momentum J 
and z component MJ. Since J is determined by 
the vector addition J = L 2 + S2 where S2 is the 
spin of the final nucleon we have 

(4) 

In (3) and (4), c:: .. are Clebsch-Gordan coeffi
cients and Y1:,M(n) are vector spherical harmon-
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ics (defined, for example, in reference 3). 
Using the orthogonality properties of the spher

ical harmonics and the Clebsch-Gordan coefficients 
the following expression for the scattering matrix 
may be obtained from (2) and (3) after some simple 
calculations: 

R (L ) . L) . JII) = - _2 - . L,+A,-L,- A, (- 1 )A,-t-A, 
2 '2• 1 '1• 21 + 11 

JMJ JMJ 
X ] CL,M,'/,tL, CL,M,'(,Il-1 

V.1f.I.2Mt 

In order to obtain the final expressions we use 
the formulas 

[nx Y ~M (n)] = i Y i"A:l' (n), 

where Q 1/211-l (n) is a spherical spinor (defined in 

reference 3 ). After some simple but tedious cal
culations we obtain the following expression for 
the scattering matrix: 

R (L2t-2; L1t-1; JIT) =- i (4 V2L1 + I I (2J + 1)) /•+1-,-L,-A, 

X { ~ ci·.~lll 0 (l2t-2) V2ld- I [ cr:JuQI, (x) b (J L2L1) 

- ~ C1~moQt (x) (C1~ol0Cf,'~ub (J L2L1) 

I 

+ V2c1~n-ldt, (JL2L1))]- ]ct~m o(l21- t-2) 
l, 

X V2l2 + I [ c7,~1uQI, (x) b (J L2L1)-h c1~moQf (x) 
f 

X (C1~owC7;Jnb (J L2L1) + V2c1~n-1dt, (J L 2L1)) J}. (7) 

Here we have introduced the following abbrevia
tions: 

6 ( l2A.2 ) indicates that in the sum over Z2 only the 
term with Z2 = L2 enters if A.2 = 0, and only the 
terms with Z2 = L2 ± 1 if A.2 = 1; Qz(x) are the 
Legendre functions of the second kind (for an ana
lytic expression for Qz( x) see reference 4; for a 
table of values see reference 5 ) . 

Values of R( L2A.2; L1A.1; JII) up to J = '12 are 
given in the table. 

2. ANGULAR DISTRIBUTIONS 

The angular distribution may be expressed in 
the form 

(8) 

where 

P1 = T(l + ~t w)(l + C1cr), P2 = T (1 + ~zW) (I + C2a) 

(9) 

are density matrices describing the initial and final 
states respectively of the nucleon -photon system. 
Here ~1 and ~ 2 are photon polarization vectors, 
l:t and 1:2 are nucleon polarization vectors, u 
are the Pauli matrices and w1 = az, w2 =ax, 
wa = ay. We follow here the definitions given by 
Tolhoek.6 

Let us write the angular distribution as a sum 
of sixteen terms: 

dcr I do = <Po+ <P1 (~t) + <P1 (~2) + <P1 (C1) + <P1 (C2) 

+ <1>2 (~b ~2) + <1>2 (~1• ~2) + <1>2 (~1• ~) + <1>2 (~1• ~2) 

+ <P2 (~2• C1)+ <P2 (~z, Cz) + <Pa (~1• ~2• ~1) + <Pa (~1• ~2• ~2) 

+ <Pa (~1• C1, C2) + <Pa (~z, C1, C2) + <1>4 (~1> ~z, C1o Cz). (10) 

To average over the polarization states of an 
initial particle we remove from (10) the terms con
taining the corresponding polarization vector and 
multiply the cross section by 2; to sum over the 
polarization states of a final particle we simply 
remove the corresponding terms from the total 
cross section (10). 

In Eq. (8) we write f in the form of a matrix 
whose elements represent the scattering amplitude 
with prescribed polarizations for the photon and 
nucleon 

c 
f = x -cose a (Cl., ~) b(l,, p.), (11) 

where a ( a, {3 ) , b (A., 1-l ) depend on the polariza
tions of the nucleon and photon and are given by 
(see Goertzel) 1 

(12) 

b (I ; I) = b (- I ; - I) = 0, b (I ; - I) = ie-i'~' (I - cos 6 ), 

b(-1; I)= -iei'~'(I-cosO). (13) 

From (ll), (12), and (13) we find. 

<1> 0 = ~ C2 (I- cos0)3 / (x- cos 0) 2, 

(14) 

<P ( ~ ~ ) 1 C' ( 1 - cos e J" • ,_ 
2 '>I' ~~ , __ -c T - (x- cos 6)2 {- ' 21 ' 11 

(15) 
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Values of the coefficients DtL2A.2; LJA.1; J) = - iR( LzA.z; L1A.J; JII) 

"'· Mev 
68 5 97 116 137 1M 217 308 

D' 

D (1,0; 1,0; lj2) 0.7726 1.099 1.262 1.402 1.487 1.696 1.830 

D(1,1; 1,1; 3/.) 0.3863 0.5493 c: 6307 0, 7012 0.7433 0.8480 0. 9152 

D (1,0; 2,1; 3/ 2) -0.3022 -0.4065 -0.4522 -0.4877 -0.5069 -0.5470 -0.5657 

D (2,0; 2,0; 3!.) 3. 739-10-2 7.986-10-2 1. 085-10--1 0.1380 0.1580 0.2164 0.2620 

D (2,1; 2,1; 5/ 2) 2. 493-10-2 5. 324-10-2 7' 237' 10-2 9,203-10-2 0,1054 0,1443 0,1747 

D (2,0; 3,1; 6J.) -3,079-10-2 -6,072-10-2 -7.863-10-2 -9.527-10-2 -0.1056 -0,1309 -0.1457 

D (3,0; 3,0; 5j2) 3.157 -10-B 1.031-10·2 1. 677-10-2 2.467-10-2 3. 072-10-2 5.168-10-2 7.170-10-2 

D (3,1; 3,1; 7!.) 2. 368 -10-• 7. 732 -10-• 1.258-10-2 1.850-10-· 2,304-10-2 3.876-10-2 5.377-10-2 

D (3,0; 4,1; 7/ 2) -3.942 -10-• -1.174-10-2 -1.802-10-2 -2.500-10-2 -2.989-10-2 --4.424-10-2 -5.454-10-2 

D (4,0; 4,0; 7!.) 0. 3320-10-3 1. 671-10-• 0. 3270-10-2 0. 5592-10-2 0. 7610-10-2 1.592-10-2 2.561-10-2 

*The D (L 2 , /\2 ; L1, /\1 ; J) satisfy the following relations: D(1,1; 1,1; 1 / 2)=-D(1,0; 1,0; 1 j 2); D(i,O; 1,0; "J.l=- D(1,1; 1,1; •;,); 
D(2,1; 2,1; 3 j 2)=-D(2,0; 2,0; "/2); D(2,0; 2,0; 5/ 2)=-D(2,1; 2,1; 5;.); D(3,1; 3,1; 6;,)=-D(3,0; 3,0; 5;,); D(3,0; 3,0: 7/,)= 

=-Dt3,1; 3,1; 7j2); D(4,1; 4,1; 7j2)=-D(4,0; 4,0; 7/ 2); D(a, a; b, ~; J)=Dtb,a; a,~: J)=D(a,~; b,rx, J)=D(b,~; a,rx; J), 
where a and b are values of the angular momenta L2 and L,; a, 13 are values of the photon parities A, and>., respectively, and a= b ± 1; 
a= 1- ~-

¢ (C C) =_!_C2 _(1-cos6)2 

2 1 ' 2 2 (x-cos6)' 

x {(C2(n1 -n2)) (~I(n1-n2))- (~1~ 2 ) (l-cos6)}, 

¢3 (~1• ~2• ~1) = ¢3 (~1> ~2• ~2) 

Cl>(~ 1: 1' "')- 1 c•(1--cos8)2 

4 " 1'"2 '"1 '"2 -2 (x--cos0)2 

To separate out large angular momenta it is 
necessary to express the amplitude in terms of the 
scattering matrix. Making use of (3), we obtain 
the desired expressions for the angular distribu
tions. 

a) Angular distribution for unpolarized particles. 
Using the formulas8,9 

= V(2l +I) (2f +I) c~~/y-~ H7 (abcdef) 

and 

y ( )Y'· •( )=(-l)m·~-./ (21+1)(21'+1) 
lm n l m n v Jl 4rt (2v + 1) 

xcr9ozo C/~-m'zmYva (n), 

we obtain (see Morita et al. 2 ) 

d:; = 4Cl> 0 = (C2 I 16) ~ R (L2/-..~; L1J...1; JTI) 

X R• (L'' .. L' ... J'n') .L,+A,-L,-A,+I.:,+<.-L'1-l.~ 
2''"2, lAb l ~ "" 

(18) 

where 

a, (JLJ'L') = V(2L +I) (2J + i) (2L' +I) (2J' + 1) 

(19) 

The summation is over all values of the angular 
momenta, their projections and v, W(a, b, c, d, e, f) 
is the Racah coefficient. 

b) Photon polarized before and after the reaction, 
nucleon unpolarized 

- (~~•~r~ -,- ~22~d sin 2cp} (C2 I 32) ~ R (L.),2; L11-1 ; JTI) 

R• (l .... L' _ .. 1.1 1-) .l-·+'··-·'.,-l.,-!-<+1-~-L~-~-; 
X ---2'';;.' lAl, L 

(20) 
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c) Nucleon polarized before and after the reac
tion, photon unpolarized 

d (r r ) I d = {I +(1;2(nt- n2l) I (tt (nr-n2)) 
a ~h ~2 0 1-cos6 

-(~1~ 2 )} (C2 /32) ~ R. (L2"A2; Lt"At; Jll) 

x R.. (L~t-~; L~t-~; in) iL,+A,-L,-A,+L~+A;-L~-A~ 

(21) 

The expressions for R( L2A.2; L1A.1; JII) calculated 
in the first section are valid only for sufficiently 
large angular momenta. Therefore, as was done 
for nucleons by Grashin, 10 the terms correspond
ing to small values of angular momenta may be 
separated from the sum over angular momenta in 
(18), (20), and (21) and treated as adjustable param
eters to be determined by experiment or by a future 
exact theory. 

In conclusion I wish to express gratitude to 
V. B. Berestetski1, L. B. Okun', and I. Ya. Pomer
anchuk for suggesting this research and for their 
interest in the work. I also wish to thank V. P. 
Ignatenko for useful discussions. 
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