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Both the idea and the results of the present investigation are related to Redmond's 
recent paper1 on the exclusion of nonphysical poles from the Green's function. In 
contrast to that work based on the relation between the spectral representations of 
the Green's function and of the polarization operator we base ourselves on the prin­
ciple of summing the information obtained from perturbation theory in the integrand 
of the Kallen-Lehmann spectral integral. On summing in this way the contributions 
from the "principal logarithmic diagrams" we obtain expressions for the photon 
propagation function in quantum electrodynamics and for the meson propagation 
function in the symmetric theory which have all the essential properties of Red­
mond's result: the correct analytic behavior in the complex plane of the momentum 
variable p2 and a singularity with respect to the variable of the square of the 
charge e2 at the point e2 = 0. However, in contrast to Redmond's result, which 
yields correctly only the lowest order of perturbation theory, the expressions ob­
tained by us correspond to terms of arbitrarily high order in the perturbation 
theory expansions in the region of large p2• 

By taking into account the lowest order logarithmic terms, it is shown that the 
region of applicability of the new formulas coincides with the region of applicability 
of the old formulas containing the logarithmic singularities, since it is restricted by 
the condition of smallness of the invariant charge. The technique of reducing the 
expressions so obtained to the renormalization-invariant form is illustrated by the 
example of the photon Green's function. In conclusion some remarks are made 
with respect to the possible situation in nonrenormalizable theories. 

1. INTRODUCTION 

IN Redmond's recent paper1 an interesting result 
was obtained, that by requiring analyticity it is pos­
sible to obtain expressions for the Green's function 
which correspond to perturbation theory and at the 
same time do not contain the well-known logarith­
mic singularities. 

Redmond's method consists of the following. By 
postulating, on the basis of considerations of corre­
spondence with perturbation theory, a spectral rep­
resentation for the polarization operator, Redmond 
writes the meson Green's function in the form 

and by utilizing the obvious relation 

rr/ (m~) = Im Ll (m2 +is), 

Redmond expresses the spectral function I in 
terms of p and obtains 

where 
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By comparing this representation with the well 
known Kallen-Lehmann representation 

(1.1) 

Formula (1.3) corresponds to the expression 
for the boson Green's function obtained by Leh­
mann, Symanzik, and Zimmerman2 if a subsidiary 
condition is imposed on the function p 
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Then by utilizing for p the expression Po (m2 ) 
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which corresponds to the lowest order of perturba­
tion theory he obtains for the meson Green's func­
tion the following expression 

d (p2) = (p.2- p2rlr li - ([L2- p2) r dm2po (m.2)]-l-~ 
~ m2 - p• 2 _ 2 • 

4M' · Po P 
(1.6) 

where p~ is the value of the variable p2 for which 
the first term in (1.6) has a pole, while z-l is the 
residue at the pole. 

Expression (1.6) has the following interesting 
properties: 1) it does not have a nonphysical pole, 
since in the neighborhood of the pole the second 
term exactly compensates the singularity of the 
first term; 2) considered as a function of g2, it has 
an essential singularity at g2 = 0; 3) in the neigh­
borhood of the point g2 = 0 it admits an asymptotic 
expansion in powers of g2 whose first term (of 
order g2 ) coincides with the result of perturbation 
theory. 

It should be noted that formula (1.6) does not 
lead to any correspondence with higher orders of 
perturbation theory, in particular, it gives incor­
rect principal logarithmic terms. This is not sur­
prising since, as is well known, 3•4 as a result of 
summing the principal logarithmic terms for the 
meson Green's function the following expression is 
obtained 

/). (p2) = _____ _:1:___ ___ ~-
(P-2- p2) [1- (5g2 I 4"') In(- p2 I p.2)]'1• ' 

(1. 7) 

which contains not a "false pole," but a nonphysical 
singularity of fractional power. It may be easily 
seen that Redmond's method based on the polariza­
tion operator is very inconvenient for the investiga­
tion of singularities of type (1. 7). This is connected 
with the fact that a singularity of type (1. 7) does not 
correspond to any simple approximation for the po­
larization operator. 

In the following we present a somewhat different 
approach to the problem of the removal of nonphys­
ical singularities from the approximate expressions 
for the Green's function in quantum field theory 
which, it seems to us, has a greater degree of gen­
erality. We base ourselves on the principle of the 
summation of the perturbation theory series in the 
integrand of the Kallen-Lehmann spectral integral. 
In this way, by summing the principal logarithmic 
diagrams, we shall obtain expressions for the photon 
and the meson Green's functions which, on the one 
hand, will possess the required analytic properties, 
and, on the other, will correspond to the perturba­
tion theory expansions in the ultra violet region. 
This principle of summation is very close to Syman­
zik's ideas5 by means of which he studied the ana­
lytic properties of the Green's function. 

2. ELIMINATION OF THE "LOGARITHMIC" POLE 
FROM THE PHOTON GREEN'S FUNCTION 

The most natural method of studying the analytic 
properties of the Green's function is the method of 
dispersion relations. At the present time this 
method is the only approach to problems of quantum 
field theory which is apparently free of internal dif­
ficulties. Therefore, it appears to be quite natural 
that further progress in quantum field theory must 
be associated with this method. 

The method of dispersion relations based on the • most general principles of covariance, causality, 
unitarity, and spectrality* enables us to obtain ex­
pressions for quantities of the type of Green's func­
tions and of transition-matrix elements in the form 
of spectral expansions. In this way the problem is 
reduced to the investigation of the properties of the 
corresponding spectral functions. These spectral 
functions, on being expanded in terms of a complete 
system of states, can be expressed in terms of 
Green's functions for more complicated processes. 
In this way a possibility appears in principle of ob­
taining a system of equations for the determination 
of the Green's functions. It should be noted that in 
contrast, for example, to the system of Schwinger's 
equations, no ultraviolet divergences arise in this 
case. However, a consistent development of such a 
program encounters a number of obstacles, since, 
for example, no spectral representations have yet 
been obtained for the higher Green's functions. 

At this point a palliative possibility appears of 
obtaining the lacking information about the spectral 
functions with the aid of perturbation theory data. 
Symanzik5 has adopted this particular approach. By 
considering the n-th perturbation -theory term for a 
certain vertex part he showed that this term can be 
represented in a definite spectral form. Then, by 
making use of the hypothesis of the possibility of 
summing the series for the spectral function, Sym­
anzik concluded that the vertex part under investiga­
tion could be represented as a whole in the given 
spectral form. 

Symanzik utilized this approach to obtain general 
theoretical conclusions leading to the proof of the 
dispersion relations. In our opinion it would be of 
considerable interest to investigate on the basis of 
the "principle of summation in the integrand of the 
spectral representation" the different possibilities 
for making approximations. As the simplest exam­
ple we shall investigate by this method the Kallen­
Lehmann spectral formula for the boson Green's 
function, and instead of summing the whole pertur-

*In speaking of the principle of spectrality we have in mind 
the condition of the existence of a complete set of physical 
states of positive energy. 



576 BOGOLYUBOV, LOGUNOV, and SHIRKOV 

bation theory series we shall restrict ourselves to 
summing only that class of diagrams the study of 
which in the opinion of a number of authors6 leads 
to the proof of the existence of nonphysical singu­
larities. 

In the case of the photon Green's function in 
quantum electrodynamics, such diagrams can be 
represented in the form of a photon line with an 
arbitrary number of simplest insertions - second 
order electron-positron loops. It is customary to 
call such diagrams "principal logarithmic dia­
grams." The contribution o' the n-th term of dia­
grams of this class is of the form 

(2.1) 

where F (k2, m 2 ) corresponds to the second order 
loop. An explicit expression for F is given, for 
example, in Sec. 32.1 of reference 4. 

In the region I k2 I » m 2 the function F has the 
form 

1 t\m2 -/~2 ( ) F (k2 , m2) == ;_r,:;- In 4m2 • 2.2 

We have introduced the term 4m2 into the argument 
of the logarithm in order to represent correctly the 
imaginary part of the function F 

(x - ' 0 ) -{! x>O 
Ox<O 

at the same time retaining its normalization 
F (0, m 2 ) = 0. 

We note that a direct summation of the terms of 
(2.2), which was for the first time carried out in 
reference 7, leads to the expression 

1 [ e2 4m' - k 2 J-1 
--7i2 I- 3" In l,m' ' (2.3) 

on the basis of which it was concluded6 that a log­
arithmic pole exists, and that, consequently, there 
is an internal contradiction in the theory. 

We shall now apply to the diagrams under invest­
igation the principle of summing in the integrand of 
the spectral representation. It may be easily seen 
that the n-th term of (2.1) can be represented in 
the Kallen-Lehmann spectral form. By restricting 
ourselves to the approximation (2.2) we obtain 

where the function In ( z ) is defined by the imag­
inary part of the function Dn by means of (1.3). On 
carrying out the summation under the integral sign 
of the spectral representation for the function I 

co 

I (z) ~0 ~ !, (z), 
TL=l 

we see that I ( z) as a whole is represented by the 
imaginary part of (2.3). On substituting (2.3) into 
(1.3) we obtain 

- 1--ln-- +- , e2 [( e2 z- 4m')' e4 ]-1 
1 (z) = {3"z 3~ 4m2 9 (2.4) 

We thus obtain for the photon Green's function 
the following expression 

D(ll2) =- ~' 
co 

e2 ~ dz (2.5) + 3 f( e2 z - 4m2 )' e• J · 
" 4m' z (z- k2 - ie) l 1 - 370 In~ + 9 

We note that a formula of this type was recently in­
vestigated by Redmond and Uretsky .10 

It is easily seen* that (2.5) represents the 
function 

1 ( e' 4m2 - k')-1 
D(k2) = -¥ 1- 3" In~ 

3" I e' 
-[1- 4 exp (- 37t 1 e2 )j [k2 - 4m2 + 4m2 exp (37t I e2 )] ' 

which on taking into account the fact that e2 is 
' 2 small, can be written for the case of I k I much 

greater than m 2 in the form 

1 
D (k') = - k'[1- (e'; 37t) In (-fl2 I 4m')] 

- k 2 +4m2 exp (3" I e2 ) • 
(2.6) 

The function (2.6) has the following remarkable 
properties: 1) it does not have a logarithmic pole; 
2) in the neighborhood of the point e 2 = 0 it has, 
regarded as a function of e2, a singularity of 
"superconducting" type exp (- 37T/ e2 ) ; 3) in the 
neighborhood of the point e2 = 0 it has an asymp­
totic expansion that coincides with the ordinary 
perturbation-theory expansion and can be repre­
sented in the form (2.3). It is also clear that the 
second term in the right-hand side of (2.6) cannot 
be obtained as a matter of principle from perturba­
tion theoryB because of its exponential order of 
smallness, as a result of which it does not corre­
spond to any Feynman diagrams. 

We also note that the final expression (2.6) is 
consistent with the initial approximation (2.3). In 
the region in which we have utilized (2.3) for the 
calculation of the spectral function, it differs from 
the final expression (2.6) by negligibly small terms 
of order exp (- 37T/ e 2 ) • 

We see thus that the procedure of summing the 
principal logarithmic diagrams is not a unique 
operation. A direct summation of the logarithmic 

*Cf., for example, reference 10. 
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terms leads to (2.3). Summation in the integrand 
of the Kallen-Lehmann spectral integral leads to 
(2.6). Assuming that quantum electrodynamics has 
physically sensible solutions which are in agree­
ment with the basic principles of quantum field 
theory, and that consequently the photon Green's 
function satisfies the Kallen-Lehmann theorem, we 
must choose from these two possibilities the for­
mula (2.6). This equation, which does not contain 
any paradoxes such as the "zero-charge diffi­
culty,"6 is thus the result of summing the main 
logarithmic terms carried out in agreement with 
the basic physical foundations of the theory. 

Naturally, (2.6) is not the only expression with 
correct analytic behavior in the complex plane of 
the variable k2, whose asymptotic expansion into 
a series in powers of e2 coincides with the usual 
perturbation theory. Examples of expressions of 
this type, other than (2.6), can be obtained by add­
ing terms containing exp (- e - 2 ) to the spectral 
function (2.4). 

We have obtained (2.4) from (2.3), which corre­
sponds to the main logarithmic terms of perturba­
tion theory. We also could have started not with 
(2.3), but with (cf. Sec. 43.1 of reference 4) 

-1 I k2 [I -e2F (k2 , m2)], 

which describes the sum of the main logarithmic 
diagrams for arbitrary values of k2 and which re­
duces to (2.3) in the limit I k2 1 » m 2• The corre­
sponding spectral function has a more awkward 
form in comparison with (2.4) but at the same time 
retains all its essential properties. 

We also note that (2.5) and (2.6) are very close 
to Redmond's formulas (1.4) and (1.6). This is due 
to the fact that the usual expression for the photon 
propagation function (2.3) has a nonphysical singu­
larity in the form of a pole, which can be well rep­
resented by an approximate expression for the po­
larization operator. 

An interesting feature of the spectral function 
(2.4) is its resonance nature. As already pointed 
out, this formula was obtained on the basis of sum­
ming the main logarithmic terms. It is therefore 
of interest to find out whether the resonance char­
acter will be retained in the spectral functions ob­
tained on the basis of summing logarithmic terms 
of a higher order of smallness, and to discover in 
what range expressions of type (2.4) can be re­
garded as sensible approximations. 

For this purpose we take for the initial expres­
sion for the photon propagation function a formula 
(Sec. 43.2 of reference 4) obtained by summing 
terms of the form ( e2 ln z )n and e2 ( e2 ln z )m 

1 [ ie2 
D (z) = - z 1 - t + 3 B (z - 4m2) 

3e2 ( ie2 )]-1 + ~In , I - t + 3 8 (z- 4m2) , 

where 

From this expression we shall obtain in place of 
(2.4) (for z 2: 4m2 ) : 

ez 
/(z) = -3 1tZ 

X {1- t + ~e2 In f (1- 1)2 + ~J}2 + ~ [1 + _Q_tan-1 :" {_'JT'__]z. 
21t l 9 U 4rr 1 --I 

It can be seen from (2. 7) that the resonance 
(2. 7) 

character of the spectral function is retained when 
higher logarithmic terms are taken into account. 
However, the effect of these higher terms on the 
behavior of the spectral function in the resonance 
region and above, is not small. By comparing (2. 7) 
with (2.4) we see, for example, that in the reso­
nance region (2. 7) differs from (2.4) by the factor 
8/17, while for very large values of z it differs 
by the factor 13/4. These factors do not depend 
on the degree of smallness of the parameter e2• 

It should be emphasized that the improvement 
of perturbation theory obtained by summing loga­
rithmic terms of different orders of smallness is 
not a consistent operation. As is well known ( cf. 
Sec. 42.4 of reference 4 ), the corresponding for­
mulas can be trusted only in the region in which 
the quantity 

e2d (ll 2) = - e2k 2D (k 2) 

is small compared to unity. 
It follows from this that the expressions ob­

tained above for the spectral functions represent 
sensible approximations only in the region below 
"resonance." In the resonance region and above 
these formulas cannot be trusted, since we are 
making use here of the initial approximation out­
side the region of its applicability, actually going 
outside the framework of weak coupling. There­
fore, we can only make assumptions about the reso­
nance character of spectral functions. 

The inapplicability of the expressions obtained 
above for the spectral functions in the region of 
very large z is not surprising, since the problem 
of determining the true asymptotic behavior even 
for the single-particle Green's function requires 
the simultaneous investigation of the asymptotic 
behavior of other higher Green's functions and ver­
tex parts. 
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3. REMOVAL OF NONPHYSICAL SINGULARITIES 
FROM THE MESON GREEN'S FUNCTION 

A similar correction of the logarithmic summa­
tion formulas may be carried out also for other 
Green's functions. Let us consider, for example, 
the meson propagation function in the symmetric 
pseudoscalar theory of meson-nucleon interaction. 
An expression for this Green's function, obtained3•4 

by improving the ordinary perturbation theory, has 
the form (1. 7). The corresponding spectral function 
arising as a result of the summation in the inte­
grand of the spectral representation will be of the 
form 

sin (i_ tan-1 Sg2 I 4 ) 
I z __ 1_ s 1-t 
()- p.2 -Z 7t[(1-t)2+25g4116j'l•' 

(3.1) 

where 

t = (5g2 I 4rc) In (z 1 p.2). 

We now inquire as to what constitutes the dif­
ference between the meson Green's function calcu­
lated by means of (3.1) and the initial approxima­
tion (1. 7). The expression (1. 7) has a branch point 
at p2 = - J.l.2 exp ( 47r/5g2 ). Therefore in the present 
case the elimination of the nonphysical singularity 
is reduced to the subtraction from (1. 7) of the inte­
gral along the cut which may be made from the 
point - J.l.2 exp ( 47r/5g2 ) along the negative real 
axis to - oo. It can be easily seen that this inte­
gral will have an order of smallness of 
exp (- 47r/5g2 ) , as a result of which it will not 
correspond to any perturbation-theory terms. 

4. REDUCTION OF THE PHOTON GREEN'S FUNC­
TION TO THE RENORMALIZATION-INVARIANT 
FORM 

It is not difficult to see that the expressions ob­
tained above for the Green's functions are not re­
normalization-invariant. In this section using the 
photon Green's function as an example we shall 
show the manner in which they may be brought to 
invariant form. 

We start with (2.6), rewritten in the form 

e2 d e2k2D 
""""3;:;- = - ~ = 3" I e2 - 1 n (k2 I m2 ) 

1 
+ 1-exp [:J1t le2-ln 11 k2 1 I m21] • 

(4.1) 

The function e2d, called the invariant charge, 
must be an invariant of the transformation of the 
renormalization group (cf. Sec. 42 in reference 4 ). 
However, (4.1) clearly does not satisfy this require­
ment. 

The usual technique of bringing expressions to 
the renormalization-invariant form utilizes the 
apparatus of the Lie differential equations and also 
makes use of considerations of correspondence 
with the ordinary perturbation theory. Since ex­
pressions of the type (4.1) cannot be expanded in 
powers of e2, it will be technically more con­
venient to start not from the Lie differential equa­
tions, but from the functional equations of the re­
normalization group. 

With this object in view we shall seek the ana­
logue of the usual function '1 normalized to unity 
for I k2 1 = A.2 in the form 

2 
!!.!:._ d rkz e2) = 1 
:J1t \1-2 ' f.. <D (e~ 1 37t)- ln (k2 I 1-2 ) 

1 (4.2) 

being guided by the fact that (as shown originally 
by Gell-Mann and Low9 on the basis of group theo­
retic considerations ) the invariant function can 
depend on e~ and A. 2 only through the argument 

(() (e~) +In )...2 • 

The requirement that the function e2d be invar­
iant has the form 

e~ d (k2 1 )...2 , e~) = e~ d (k 2 I m~, e~) = e~. d (k2 I)...~. et), (4.3) 

where m 0 is a quantity of the order of magnitude 
of the electron mass, while e0 is the correspond­
ing value of the charge. This requirement deter­
mines the relationship between the laws of trans­
formation of charge and of the normalizing mom en­
tum by means of the function .P 

from where, in particular, it follows that 

<D (e~ I 3rc)- <D (eg I 3rc) = -In()... 2 I m~). (4.4) 

A qualitative restriction on the function .P follows 
from (4.4). When A.2 ---. oo the function .P (eV37r) 
must tend monotonically to - oo. The explicit form 
of this function may now be determined from the 
condition of normalization of d. By setting 
k2 = A.2 in (4.2) we obtain 

e~ 1 

:J" = <D (e'i I 37t) + 1 - exp [<D (e~ 1 37tl] ' 

i.e. 

X= li<D(x)-1/[e~<x>_l]. 

From this equation it can be seen that .P is indeed a 
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monotonically decreasing function of its argument. 
For small x, if> (x) ~ 1/x and (4.2) goes over into 
(4.1). At x =! the function if> goes through zero 
and reverses sign. As x- 1 the function if> 
tends to - oo. 

From the condition of normalization of the func­
tion d and from (4.3) and (4.4) it follows that 

( e~ ("-2 2)) ( e~) f..2 <D 37t d ;;;'i, e0 = <D 37t - In m2 , 

0 0 

from which we obtain 

(4.5) 

If now, following the generally accepted rules ( cf., 
for example, reference 9), we determine from 
(4.5) the renormalization constant z3 for the pho­
ton Green's function, we obtain for it th~ finite 
value 

Z3 = e~j 3rr. (4.6) 

Naturally no final interpretation should be given 
to (4.6). 

We have carried through the above arguments in 
order to show how expressions can be brought to 
the renormalization -invariant form without utiliz­
the Lie equations. 

5. ON ONE POSSIBILITY IN NONRENORMALIZ­
ABLE THEORIES 

A model expression for the Green's function in 
a nonrenormalizable theory was given by Redmond 
and Uretsky. 10 We now attempt to obtain an expres­
sion of this type by making use of the method de­
veloped earlier of summing in the integrand of a 
spectral representation. We shall carry through 
the argument using as an example the nonlinear 
fermion theory with a fourth order interaction 
Lagrangian g1[!01f;1[!01f;, and we shall consider the 
4-fermion vertex Green's function r (p', q', p, q). 

By basing ourselves on renormalization-invar­
iant considerations, we can assume that the sym­
metric asymptotic expression in the ultraviolet 
region has for its principal approximation the 
form* 

r(p, p, p, p) = f(p) =I /[I +gF(p)], (5.1) 

where F (p ) is the contribution from the simplest 
fermion-antifermion loop. Perturbation theory cal­
culations for r (p) lead to the expansion 

r (p) =I + LJgnrn (p), (5.2) 
n 

*The equations of the renonnalization group for this case 
are given in reference 11. 

where, for example, for I p2 l » m 2 an expression 
of the type 

rr = - p2 ln (P2 I m2) + p21r + 10 • (5.3) 

holds for r 1· 

Here I0 and I1 are divergent constants. In the 
general case the term r n contains a polynomial in 
p2 of degree n with divergent coefficients. By 
means of the usual subtraction methods it is pos­
sible to eliminate from r only the divergent term 
which does not depend on p2 (of the type I0 ) since 
the introduction of counter terms proportional to 
powers of p2 leads in the final analysis to non­
local effects (cf., for example, Sec. 28.3 in refer­
ence 4 ). 

Therefore the formal subtraction of divergent 
terms of the type I0 and p2I1, leading to (5.1) 
when F (p.) = p2 ln (p2 /m2 ) , is not quite consistent. 

Here we can make a hypothesis that r regarded 
as a function of g has an essential singularity* at 
g = 0 in the neighborhood of which there exists no 
asymptotic expansion for it in powers of g. An at­
tempt to expand formally in powers of the coupling 
constant leads to divergent expressions in each 
order [the terms I0 + p2I1 in (5.3) ]. 

On the basis of this hypothesis, and taking into 
account the fact that the finite terms in (5.2) have 
the form [ gp2 ln (p2/m2 )]n, we can attempt to sum 
the series (5.2) with the aid of the following spec­
tral representation 

"' r (p) = I + p2 \' p (z) dz 
.l z(z-p2 ) • 

(5.4) 
m~ 

At the present time we do not have for the 4-ver­
tex function an analogue of the Kallen-Lehmann 
spectral formula. Therefore we actually have to 
postulate the representation (5.4). However, it 
appears to be a fairly natural one, since, for 
example, it corresponds to the separate terms 
given by perturbation theory. 

Naturally, the representation of the individual 
terms of the sum (5.2) in the spectral form (5.4) 
is purely formal, in view of the divergences con­
tained in them. However, in accordance with the 
assumption which we have made, the complete ex­
pression of the form (5 .4) for r obtained by means 
of summing the series 

(5.5) 
n 

for the spectral function p may turn out to be fi­
nite. The individual terms Pn in the sum (5.5) are 

*In this connection see references 12 and 13. 
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determined by the imaginary components of the 
logarithm. Therefore, in order to evaluate the sum 
(5.5) we must make use of expression (5.1) with 

F (p2) = p2 {In (I p2f I m2)- i1':8 (p2- m~)}. 

In this way we arrive at a spectral formula of the 
type 

CQ 

f()--1' 2\ dz 
P ~ 1 gp ~ \Z ~ p") [(1 + gz ln (z 1 m"))2 + n 2g2z2 j' 

(5.6) 

rn" 

" 
which is quite close to the model expression of ref­
erence 10. This formula has the following impor­
tant property. The integral in the right hand side 
of (5.6) is convergent; however, when we attempt 
to expand it into a power series in the coupling 
constant, we obtain divergent expressions in each 
order. Thus, (5 .6) is in complete agreement with 
our assumptions. 

With the aid of Cauchy's theorem for the func­
tion r (p) /p2, we can rewrite (5.6) in the form 

1 ~ r (p) ~ ,...-.,....~~~ - --.,....--'------::-,_ 
~ 1 + ;:p2 In (p2 / m") gp~ (p2 ~ p~) [1 + ln (~ p~ 1m2 )]' 

(5. 7) 

where p~ is a root of 

I+ gp~ln(- p~/ m 2 ) = 0. 

In the limit of small g > 0, the root p~ tends to 
- 1/ g, and the second term in (5. 7) takes on the 
form 

gp2/ (I + gp2) (I -In gm2). (5.8) 

The function f ( x) = [ 1 -ln x ]-1 has the following 
properties: 

f (0) = 0, f'(O) = f" (0) = ... = ftn> (0) = ... = oo. (5.9) 

Therefore since the term (5.8) is small for small 
gm2, it does not give an asymptotic expansion in 
powers of g. An attempt at a formal expansion 
leads in accordance with (5.9) to a series with di­
verging coefficients. 

The following circumstance is curious. The 
second term in (5. 7) turns out to be (for small g) 
quite small everywhere for p2 not too close to 
pij. In this region the function r is practically 
equal to the first term in (5. 7). This fact may 
serve as the justification for the formal subtrac­
tion of a polynomial in powers of p2 with diver­
gent coefficients from the expansion (5.2) with a 
subsequent summation of the finite terms with the 
aid of (5.1). 

We emphasize again that the argument given 
above does not pretend to be rigorous to any de­
gree, and represents an attempt of describing one 

of the presently possible variants of the situation 
in nonrenormalizable theories. 

6. CONCLUSION 

Let us now take stock of the situation. As has 
been just demonstrated, even a very preliminary 
attempt at a synthesis of the method of dispersion 
relations and of perturbation theory allows us to 
obtain expressions for the Green's functions which 
do not contain nonphysical singularities. It should, 
of course, be emphasized that the range of applica­
bility of the new formulas does not differ from the 
range of applicability of the old formulas, being 
limited by considerations of going outside the 
framework of weak coupling, and that in this region 
the new formulas practically do not differ from the 
old ones. 

Therefore, the procedure of eliminating non­
physical singularities does not in itself provide an 
actual method of going outside the framework of 
the generally adopted approxi]Uations. However, a 
deeper synthesis of the approximation methods and 
of the dispersion relations initiated by the papers 
of Redmond and Symanzik may be of great signifi­
cance in principle. 

We shall clarify this remark by using the Lee 
model as an example. As is well known, the exact 
solution of the Lee model contains the difficulty of 
a logarithmic pole. On the other hand, the nonrela­
tivistic Lee model has the property of causality 
with respect to time and, consequently, on the basis 
of the principle of spectrality the one-dimensional 
analogue of the Kallen-Lehmann theorem, with re­
spect to the variable E, holds for this model. 
Since the exact expression for the Green's function 
does not satisfy the Kallen-Lehmann theorem, this 
means that the initial Hamiltonian contradicts the 
condition of spectrality, i.e., that (as is well 
known) the system of eigenfunctions of this Hamil­
tonian includes states with negative energy. Since 
such states are physically meaningless, this means 
that the initial Hamiltonian was not well chosen. 

By applying the correction described above to 
the Lee model Green's function, we shall obtain 
for it an expression without the logarithmic pole, 
which will be equivalent to the subtraction from 
the Hamiltonian of terms corresponding to nega­
tive energy states, i.e., to its reduction to a phys­
ically sensible form. 

In electrodynamics two hypotheses can be made 
with respect to the cause of the appearance of the 
logarithmic pole: 1) the initial Lagrangian is a non­
physical one, i.e., its complete system of eigenfunc­
tions does not satisfy the requirement of spectral-
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ity; 2) the reason for the appearance of the loga­
rithmic pole is contained in the inappropriate 
choice of the approximation method used. 

From the point of view of the first possibility, 
which is equivalent to the situation in the Lee 
model, the correction described above for the pho­
ton Green's function corresponds to correcting the 
Lagrangian. In the second variant this procedure 
reduces to the automatic elimination of parasitic 
singularities which do not correspond to the phys­
ical content of the theory. Naturally .• at present, 
it is not possible to choose between these two 
possibilities. 

It can now be seen that the method of summation 
in the integrand of spectral representations appears 
as a certain new "super-subtraction" procedure 
which removes nonphysical singularities irrespec­
tively of the reason for their appearance. It should 
be emphasized that this "second subtraction" pro­
cedure is a perfectly natural one, since it repre­
sents a mathematical formation of the requirement 
of the correspondence of the results to which it 
leads with the initial physical principles of the 
theory. 

The authors express their gratitude to Prof. 
D. I. Blokhintsev, B. V. Medvedev, and M. K. 
Polivanov for discussion of the results. 
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