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;

The behavior of the thermoelectric tensor in strong magnetic fields, when the electron
Larmor frequency is greater than the collision frequency, is considered by the methods
proposed by Lifshitz, Azbel’, and Kaganov."3 Drag of the electrons by phonons is taken
into account, and it is shown that this latter effect significantly changes the asymptotic
values of the tensor (for large values of the magnetic field) and also its dependence on
the direction of the magnetic field relative to the crystal axes (in the case of a complex

topology of the Fermi surface).

Ij[lHE asymptotic behavior of the thermoelectric
tensor in strong magnetic fields was studied by

I. M. Lifshitz and Peschanskii.* However, they

did not take into account the phenomenon of the
drag on electrons by phonons. The aim of the
present work is the consideration of this latter
effect. We shall consider the region of low tem-
peratures, where T < ® (® is the Debye tem-
perature and T the temperature of the specimen).

1. THE KINETIC EQUATIONS FOR ELECTRONS
AND PHONONS

The linearized kinetic equations for the electron
and phonon distribution functions, n(p) and N (q),
in the presence of a temperature gradient, a mag-
netic field directed along the z axis, and a chemi-
cal potential gradient Vu, have the form

B(nt—)—t— ne) — a(na—; no) o — te_dl Wed (n o no) +x Oarz: va
an va.
+ a,: —+ 8(21572)3 Vo o4a{l(Ng + 1) (1 —np) nprq —np

X (1 —np1q) Ng) 8 (epq —8p— hdg) 4 [np1q (1 —1p) Ny
—np (1 —npiq) (N—q 4 1)1 8 (5p1q — &p + Fg)};
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By the substitutions

n(p) = ne (e — pve (p))andN(q) = N, (hwg — qv; (q))

and for small v, and vg, these equations take the
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form
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Here 7 is a quantity defining the phase of the
electron in the Larmor orbit; w* = 2n/T,), where
Ty is the characteristic time for motion around
the orbit, after which the momentum of the electron
changes by a quantity of the order of the period of
the reciprocal lattice or (in the case of a closed
trajectory) returns to its initial value (see refer-
ences 2 and 3), p is the quasi-momentum of the
electron, v = 9¢/8p is its velocity, q is the
quasi-momentum of the phonon, s = 9 (hw)/8q is
itsgroup velocity, Wed ~ 1 and tygq are the dimen-
sionless collision operator and the characteristic re-
laxation time of electrons on lattice defects and on
each other. The latter is of the order HE/TZ,
where E is an energy of atomic order® and can
be shown to be important at low temperatures for
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sufficiently pure metals; tfq is the relaxation
time of phonons on lattice defects and on each other;
{ =hwq/T; x=(ep—-u)/T; T is the temperature
in energy units. In the latter system, and in what
follows, n(x) and N (¢) denote the equilibrium
distributions for electrons and phonons. When vg
does not appear under the integral sign, the inelas-
ticity is taken into account in n (x+¢), and is neg-
lected in the 6 -function, which is valid. The vec-
tors Vve(p) and v¢(p) have the meaning of drift
velocities of electrons and phonons, respectively.
Their interaction tends to equalize these velocities.
In this case, the drag on the electrons by the pho-

nons is expressed by an integral containing (Vg —Vyg).

If (for its estimate) we consider ve —Vf to be
constant, then the remaining integral I, multiplied
by T/p, determines the order of magnitude of the
reciprocal of the relaxation time for scattering of
electrons on phonons in terms of the momentum
ts!

The law of conservation of energy for ® > T
»> ms® gives e (p +Q) -€(P)=v-q+ 32 mg
X qgqg = 0. Here maﬁ = Bze/apaapﬁ We set
q=qL + qVv/v, where q;-v=0. Since q < mv,
then, in first approx1mat10n, q); = 0, and in second,
q = - Z maﬁqaqﬁ/ZV, where the primes on the
sums indicate that the directions of @ and B are
orthogonal to v. After integration over q| in I,
we get an integral of the form

{ag, (@, +q,v/iv)®@. @

In ¢(q), we can set q =q;, and since &(q)
= ®(—q), there remains only the integral over the
second component Since Vp,p+q ~ 9 while q
~ q 1, then t5 ~ T°, i.e., actually, the time of
equalization of the drift velocities of the electrons
and phonons is connected with momentum relaxa-
tions (see references 5 —7), which is physically
understandable, since the drag on the electrons by
the phonons takes place as a result of the change
in their momentum due to interaction with the pho-
nons. The integral containing the difference
Ve(p+q) — Veo(p) expresses the trend to equaliza-
tion of the drift velocities of electrons with differ-
ent momenta by the agency of their interaction with
phonons. Since €psq~ €p = ﬁwq, while the angular
separation of the vectors p+q and p is insignifi-
cant, then this is actually the energy relaxation of
electrons due to phonons. In a manner similar to
the above, it is not difficult to show that the corre-
spor;ding reciprocal of the relaxation time is tg‘
~ T,

The drift velocity of the phonon can be elimi-
nated from (1) in the stationary case. Inasmuch as
we are interested here in the case in which the elec-
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tron current j =0, we can neglect the integral term
containing Ve in the phonon equation. It can be
shown that consideration of this term in the calcu-
lation of the electric conductivity leads to the
“renormalization” of the relaxation time, so that

the effective relaxation time of the electrons is

=t —aty e,

where ;7' =15+ttt =tlg +

tef is the relaxation time of electrons on phonons,
tfe is the relaxation time of phonons on electrons,
determined by the integral for vg-q/T in the pho-
non equation (1), and «a is a numerical coefficient.
If the metal is “dirty,” i.e., if tf K tgg, or tg
K tgf, then 75 =tg. If the metal is “clean,” then
Te has the same temperature dependence as
te(tef), and differs only numerically from it.
Physically, the latter effect represents the
change in the scattering of electrons by phonons
as a result of the fact that the drift velocity of the
latter increases because of the presence of drift
in the electrons (“mutual” drag).

Turning to our case, we get for vy the equations
v vT vT
{EP>=——Y—P—"_xV (3)

T T — — 7 Fi

2 (o

d3, e
F = S(Z:#tf (q) ESVP,p+q [n (;c(x) )

z (’-:(;‘)E) N (E)] d (ep+q —p) -

NE+1D

)

Here
W =t Wea 4 tof! Wer.
We can get the order of the quantity F by equating

the integral for it to the integral determining the
relaxation time tg:

F~ B tysts! ~s > tyt7 ®)

2. SOLUTION OF THE KINETIC EQUATION IN
THE CASE OF SCATTERING OF THE ELEC-
TRONS BY LATTICE DEFECTS OR BY EACH
OTHER

We must solve the equation

= () o 0 (7

Solving it, we can find the current ji(T) = Y BikVKT;
k

vVT vT
>=—x—T ——F. 6

here, the desired thermoelectric tensor aji, which

is determined from the relation Viu = —e )@ ViT
k

for the condition j =0, is

ap = — 20 Bk
1
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The tensor ojik is known (see references 2 and 3);-

therefore it is necessary to find the tensor Bjk.
We shall seek a solution of Eq. (6) in the form

pve/T = —tg N4V T/T .

1

For i, we obtain the equation

ay, . )
57 T 1W (i) = oxv: + 1oF . (6)

Here v, =1/w*ty < 1. To each of the two terms of
inhomogeneity in Eq. (6”), we can juxtapose ¥ji,
and iy, respectively.

In accord with this, we also have

b= 3+ B0 am=oll +aff
In this case, quantities with index (1) are defined
directly by the effect of the temperature gradient
on the electron, and those with index (2) by the
drag of electrons by phonons. The asymptotic
value of the tensor !’ was found in reference 4.
B oF 1,2)
If ?’ik = yg’lk.aik, then the order of the ajp? can
easily be estimated.* Let
% = Yo 'k 0, om = Yo ke ;
Then a' ~b®/ec. But b"/c is of the order of
the ratio of the right sides of the kinetic equations
determining 8™ and o, multiplied by T/u (in
view of the presence of the factor x in the inho-
mogeneity of the equation for 8?) so that

aX) ~ T/ep. (7)

Equating the same two terms in the inhomoge-
neity of the equation and taking (5) into account,
and also the fact that Fj is an (almost) even
function of x, we find

R s W 9)"’ f
0 ~a0 L g ()L (8)

since s/v = (hs/a)a/hv = ®/u (a is the lattice
constant). If the phonons are scattered by the
electrons, then tf ~ (h/®)u/T, ts~ (H/®)(®/T)°
(see references 5 —7), so that,

a® ~ a (T/0)2u/8. 8"
Therefore, for not very low temperatures, i.e.,

B> T >T,~0 B/ 9)
the drag effect predominates even in those elements
of the tensor «ji in which the asymptotic values
of ai‘ll{) and oz{zk) are identical in 7y,. But, as will
be seen below, the asymptotic value (in vy,) of

*As 1n references 1-3, we denote by y, the small ratio
¥o = Ho/il,where H, is a characteristic value of the magnetic
field (for which the Larmor period is of the order of the relaxa-
time t,).

ozi(f{) is always smaller than the asymptotic value
of aff). In what follows, only B{ and aff) are
computed. Therefore the index 2 is omitted for
brevity.

For calculation of Bjj, it is necessary to solve

a0y, A
oW @) = 1o 6")

P = lim @2%3’5 (§ dedp. E T gy (10)
Integration is carried out over all momentum space;
G is the number of cells included in the limits of
integration. As in references 2 and 3, it is neces-
sary to treat the following cases separately
(le-pl~T):

1. The trajectories € =const, py = const are
closed and lie within the limits of a single cell of
the reciprocal lattice.

2. There is a layer of open trajectories.

3. The approximation to “critical” directions
(see reference 3).

1. Closed Trajectories Lying Within the Limits
of a Single Cell

As in reference 2, we seek ¥; in the form

©
ng(n).

b == Ao 11)
n=0
We then obtain the set of recurrent equations
o /0t =0, Y0t -+ W §°) = F;,
/ot + W (") =0 npu n>2. (12)

The periodicity in T serves as an additional con-
dition on these equations, i.e.,

§W@yds = §Fras,  §W@E=0, n>2 03

Integration is carried out over 7 along the closed
trajectory. Since all fFidT # 0, then all

47 = C¥ (e, p2) 0.

We also take it into account that fvx,yd‘r ~ fdpy,x
= 0; then the tensor in this case generally has the
form

Yob xx Yoby, Yob yz
B = Tobyy  Yoby, Yob, -
' b b I).’Z

zx 4

(14)

The symmetry properties of the crystal can change
the asymptotic value of the tensor 3. Thus, for ex-
ample, if there is mirror symmetry relative to the
plane zx, then, inasmuch as both vj and Fj are
transformed in the symmetry transformation as pj,
and the operator /87 ~ vy8/8px is odd, while W
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is even relative to the transformation Py, pﬁ,

— —Py, —Py, the equation for y; can be written
in the form

L (§:) = xoF s, where Ly o, (H)| = — L_, _, (—H),

i.e.,
$rz (py, H) = ¢rz (—py, —H),

$y (py, H) = — ¢, (— py, — H).

Therefore Bxz, Bzx, Bxx» Byy, Bzz are even,
and Bxy’ Byx’ Bzy: Byz are odd funzctions of H,
so that Bxy ~ Y§: Bax ~ V85 Bxx ™~ V3 Byy ~ 7%
Bzy ~ V(Z) .

This result is found to be in agreement with the
requirements imposed in the macroscopic theory
on the tensor Bj.. Actually, if we write

Bir = Cir + CriimHim + Cirtmem Himt 1

where Hjyy, is an antisymmetric tensor, the dual
to the pseudovector H, and c is a tensor of the
corresponding rank, and if we consider that, when
H=(0, 0, H), only Hyxy = -Hyx = 0, then it is
easy to see, from the presence of mirror symme-
try relative to the plane zx, that the components
of the tensor Bjk which contain an even number
of signs ik equal to y are even functions of H,
and vice versa.

Returning to the general case, we have (making
use of the expression for ¢~! from reference 3):
[ Ayx axy Az
a a a

. vy yz | .

i Aoy Gy Qg
|

X

(15)

L =

The case in which the Fermi surface is closed and
the number of electrons is equal to the number of
holes should be specially noted. In such a case
(see reference 2), the asymptotic value of the
tensor o is such that

—1 —1 vl
To %xx To %y To Cxz
—1 —1 —1
Gie = | To %yx  To Yy To %z |- (16)
oy Ay Az |
H

2. Open Trajectories

Equations (12) must be solved in this case under
the additional condition of finiteness, i.e.,

o” = T
W (¢:) = F;, where _—_T]_lg 5= S id=

and integration is carried out over the entire tra-
jectory. This means that
WP =0 forn>1.

Generally, all Fj = 0, so that all Ci‘o)(e, Pz)
= 0. However, if all trajectories have infinite ex-
tension in on direction, chosen to be the x axis,

W o™ = Fl,
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then
vo~1lim L (dp, =0,
* T—>00 2T S pu
since p,, changes within finite limits. Conse-
quently, in this case,
i'Tobx.t T“bxy Yoby, I
Bix = by byy by. i 17)
bzx bzy bzz !
The expressions for the «ji have the form
70_]axx 7;1axy T;laxz *
Qe = ayx tlw/ ayz ’ . (18)
azx azy Qzz I

3. Approximation to “Critical” Directions

Let us consider the case here in accord with the
classification given by I. M. Lifshitz and Peschan-
skii.3 For simplicity of calculation, we set W =1.

a) Approximation to an isolated direction, in
which a layer of open trajectories appears. In this
approximation, there are greatly extended trajec-
tories whose period of motion is 7y~ T,/¢#, where
¢ is the angle between the direction of the magnetic
field and the direction in which the open trajectories
occur.

The equation for ; has the form

0/07 + 1¢: = 1F s,

Applying the Fourier method (see reference 2),
we obtain
28[0

T =To/lg~ To'd (19)

5 . 107 on e f
3= 20 el — 20 Jym F@)
Y= ey LG | Jdedp 5 i
n 2 ¥ (1,§11)F’(‘c—rz) + Ul(—n)Fén)) +in (UEII)F’(<~11) . vlg—n)],-lgn))l
T ,lg+,r: !

n=y\
20

Here, v{D, F{) are the Fourier components (of )
the corresponding quantities as functions of 7.
Taking it into account that V((,n) ~ ¢, while the
factor 1/¢ which comes from 7, is compensated
by the factor 1/G, and that v{’ = v)(,O) =0, we
obtain

: 70bxx 7°bxy 7°bXZ
i = by by, by, I (21)
; bzx bzy b:Z i
Here, all the bjx are functions of the ratio 7
=7, /¢, while Bjk(») =const, and as n — 0:
The () by, (0) by, (0);
bk = |y Wby, b |- (22)
s b (0) by, (0) by
Hence we obtain for the tensor ajk:
é T;[d&r T[_)-lu_\'!/ Yo—la,\'z !
Iiw = 1 Tyy Ay i (23)

P es a4, a
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where all aji are functions of 7.

As 71—, all ajx — ajg(~) =const, and as
n—0,
|maee  may,  ma
Gik = a,,(0) a,, (0) a,(0) (24)
a,, (0) L 0) a,,(0)

in agreement with Eqs. (15) and (18).

b) Approximation to the direction in which the
layer of open trajectories disappears. If we de-
note by 4 the angle between the direction of the
magnetic field and the critical direction, then,
since the contribution to the tensor Bjx from the
open trajectories ~ ¢, in this case ik = gik
+ddjik, where the tensor gji has a structure of
the type (14), and the tensor djix has the type (17).
By means of Eq. (29) of reference 3, we get the
following expression for aji:

—1 —1 —1
axx + MO cxx axy + ‘9’70 ny aXZ + 370 cxz
Qi = a,. a,, a,,
a

. (25)

2x a2y a;;

3. CASE OF SCATTERING OF ELECTRONS BY
PHONONS

In view of the presence of two relaxation times
for electrons relative to phonons, tef (see Sec. 1),
it is necessary to investigate the role of the oper-
ators of relaxation for the direction W;/t; and
the energy W;/t;. If we introduce the function
ny = —Vg -pdny/de, and multiply the electron equa-
tion in the system (1) by 0n,/9x, then the term
containing Veg-(P+q)— Ve(p), has the form

g M (xQ; x'Q)ny (x'Q) dx'dQ’
— 1. (xQ) % K (xQ; x"Q") dx"dQ".

Here @ is the set of angular coordinates of the
momentum p. We write

S M(xQ, x'Q)ny (x'Q)dx'dQ’
= g M(xQ, ¥’ Q) [ny (£’ Q) — ny (x' Q)]
X dx'dQ + de' RM (xQ, x'Q")n, (x'Q) dQ’.

'l:he first of the integrals can be combined with
W;s, which represents a relaxation in direction,
such that

W, (2, X'Q) = 8(Q — Q) {S M(xQ, ¥'Q")dQ"

—5(x— 1) X SK (xQ, Q) dx"dg"} .

Here,
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8(x—~x

Sp'—p)

MxQ, ¥Q)=V,ph {No(x —x) = "°"

4 No(x — ') ex=

no(z') a(x —x +E p)}

)n"(x) &(x' — x + Epp)

no (x)

K(xQ, x'Q) =V, A'{No (x —

+N0(x'——x)e"""‘n°(x) S{(x' —x—

70 (X) )

(A = number of states in the interval dxdQ).

It is easy to establish the fact that, with accu-
racy up to terms ~ T/u, we have K (xQ, x'Q’)
=M (x'Q, xQ'), so that

71, (xQ, ¥'Q) =8(Q— Q) {L (x, ') — 8 (x — x')
xg L(x", x) dx”},

&S Wy (xQ, x'Q) 5 (x') dx'dx = 0. (26)

This property of the operator W3 expresses the
fact that a change in the total number of electrons
in a solid angle can be brought about only as a re-
sult of collisions with a change in momentum.

We set ny = ¢ (pg, T) X (€)dny/de, which is
possible in view of the 6 -like character of the
function 0ny/de. The current is

. 2e eHTo 6no
.I - (zﬂﬁ)a Sgdpzdf SVCP (pz, )/ (S)

2e
= g ) ) deee
since x (€) can always be chosen in such a fashion
that

ds

= v () ¢ (p),

(e (erde=1.
The kinetic equation for n; has the form

O o W (n) + 157 Wa(n) = — R22 . (27)

If R (x) =R (—x), then the corresponding function
n;(x) =ny(—x), since W(x,x')=W(-x, —x’)
(see reference 6).

Integrating Eq. (27) with respect to € with ac-
count of Eq. (26), we obtain an equation for ¢ (pz7):

0*09/d - W' (9)/t5s = R{0j, W’ (p.t; pat’)

= SS dx'dxW 5 (xp.=; x’p;t’)x (z') 0ny/0¢’. (28)

Consequently, the function ¢ is determined by
the directional relaxation time t;. If R (x)
= —-R (—x), then, correspondingly, n;(—x)
= -ny(x) and is determined from Eq. (27), where
it is possible to discard the term W; /t; since
1/t5 < 1/t3.

Inasmuch as the inhomogeneity in the kinetic
equation, which determines the electrical conduc-
tivity and the drag effect, is an even function of x,
then the tensors ojx and B contain v5 ~ 1/wts,
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and the coefficients in the expansion in powers of
vs are proportional to t;. In the calculation of
the tensor Bl(f{) , it is necessary to take it into ac-
count that the even part (in x) in the equation de-
termining the tensor is smaller than the odd by the
factor T/u, but in the calculation of the current
from the odd part, a factor of the same order of
magnitude appears.

We note that in view of the sharp-difference be-
tween t; and t;, a case can occur in which t;
<teq and t; >tg4q. In such a case we must replace
t; by teq. Moreover, in certain magnetic fields it
can happen that 1/wty =73 > 1, while v; = (wtz)™?!
> 1. In such a case, the asymptotic value will evi-
dently be an expansion in y; and 3 1, We shall
not linger over these cases. Then,

B = tafin (13) -+ ts@ux (1s)-

Since t; > t3, i.e., 5 < 3, then the zero order
terms (in 7y) are proportional to t;, and terms
of second order ~ vit;. The two first-order terms
are equal, since vyst; = vsts = yt. Therefore, the
tensor ai‘f{) remains the same as in Sec. 2, if we
set 7y, =175 in all formulas for ai(f{). The tensors
Bﬁ(’ , and correspondingly, the oz‘iiﬁ, have the follow-
ing form (see reference 4):

1) The case of close trajectories lying within
the limits of a single cell:

Tgtscxx 7tcxy 'thxz
(1 __ 2
Bi = TiCyx TalsCyy  TiCye (29)
] 7102}: 7’025/ t5czz
Using ojk from references 2 and 3 we get
) Gex  T3l8xy Ayz
(1) _
Xix = | Y3,y Yy Auz |- (30)
Tslzx  Tsdzy 2z

The tensor for Qi(zk) has the form (15). In the case
of a closed Fermi surface, for an equal number of
electrons and holes, the a{f?®) have the form (16)
if we set vy = vs.

2) Open trajectories. In correspondence with
the above, we have

'Tgtf’cxx 7tcxy 'thxz

1)
?‘ik = 'T’ng t5cyy tf’cyz ’ 3 1)
Tic,, t5czy t;,czz
YsYs1a,, 75_1axy 75_1ax2 [
(N —
%y = i T3y Ay ayz ’ (32)
I T3a2,\- azy azz

oz{lz{) has the form (18) with v, = vs.

3) Approximation to the critical directions.

a) Approximation to the direction in which the
layer of open trajectories disappears. As above,

in Sec. 2, B} = gfi) + Jdﬁ{), while gﬁ{) has the

form of (29), and dﬁ{) has the form of (31). Tak-
ing this into account, we get the following expres-

. (1),
sion for o)

Qyx + TaTs_l‘lhxx 73axy =+ ‘9T5—w"5’ Az + ‘975—]"‘;:2

’

33)

(1) —
ik T3y, Ay Yz

V50 % + dvsC,y Tsazy + sczy a,,

a{f(’ has the form of (25) with vy, = vs.

b) Approximation to the isolated direction in
which a layer of open trajectories arises. If ¢
is the angle between the z axis and the critical
direction, while 713 =v3/#, 15 =7v5/$, then the
tensor agfg has a structure of the type (23), (24),
if we set vy =15, 1 =75 in the latter equations.

In the approximation of the tensor aﬁ{) we con-
sider three regions:

1) 13 < 1; 7n5 < 1. With consideration of the
relation between 73 and <5, we get the expression

Tgtacxx 7tcxy Yic,,
34)

(1)
B = Yic,, "I;Z;tscyy
Tl

ntcyz

nic lsc

2x 2y 2z

for B{f, and by means of oy (vs, n5) from ref-
erence 3, we determine oz{k:

Ax Ts_lnsnsaxy 75_ lnsaxz
(1)
e = | Y38y, Qyy a,, . (35)
V5925 Nslzy .

2) m3> 1; 15 < 1. In this case,

'Tgtscxx Yy, Yy,
R = 1e,  ta(c,+mmc,) e, (36)
Ttc,, 1tczy tsc,,
and correspondingly,
Qe+ MMsbey 137 (g, + Mamsby,) Y Msay,
aff) = Tsyx Qyy ay, . @37
EUH T Nsd,, 2

3) ng > 1; n5 > 1. Under these conditions,

Tgtscxx 'thxy thxz

B = | eu Bey  fsCy |, (38)
thzx t5czy 15Czz
TSYs—Iaxx T;laxy T;laxz
afp = Tsqyx Ayy Az |- (39)
RELPP a,y 52
(2)

As is seen, the elements of the tensor a;j/
always have an asymptotic value (asymptotic in
v and 7) no higher than the asymptotic value of
the corresponding elements of the tensor aﬂ().
Thus, as has already been pointed out, the coeffi-

cients in the expansion in y and 7 in «®, (if
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the phonons are scattered by the electrons) are
of order (T/®)3/e, while in a'?, they are of
order ~ T/eu [(7), (8')]; above the tempera-
ture Ty [Eq. (9)] the drag effect predominates,
except for the case (37), when a' can exceed
a® [Egs. (23) and (24)].

In the isotropic model (for this the asymptotic
values of a® and o' coincide for scattering
of electrons by other than phonons, expanding

B(I,Z) - Eﬁi‘l,Z)yo, we get B;Z)/B_S[‘” - (T/T%/r) )2,
r

where
T(r)~54|(f+2)—('l—f)?>_, 1—r |
v =~05.

|

(n ] ne) T T me) (v ] vo) l

Yrf(s] 500 | ng\':
o ( vive )

m* = (d%/dp*)7t, 6 = — d(Int,)/d(Inp).

deg;

Here n is the concentration of electrons, m,
=107 gm;

- -1
So = 3-10° cm-sec 1, v, = 10,cm-sec ,

n, = 3-1022 cm 3,
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