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The behavior of the thermoelectric tensor in strong magnetic fields, when the electron 
Larmor frequency is greater than the collision frequency, is. considered by the methods 
proposed by Lifshitz, Azbel', and Kaganov. 1- 3 Drag of the electrons by phonons is taken 
into account, and it is shown that this latter effect significantly changes the asymptotic 
values of the tensor (for large values of the magnetic field) and also its dependence on 
the direction of the magnetic field relative to the crystal axes (in the case of a complex 
topology of the Fermi surface). 

THE asymptotic behavior of the thermoelectric 
tensor in strong magnetic fields was studied by 
I. M. Lifshitz and PeschanskH.4 However, they 
did not take into account the phenomenon of the 
drag on electrons by phonons. The aim of the 
present work is the consideration of this latter 
effect. We shall consider the region of low tem­
peratures, where T « ® (® is the Debye tem­
perature and T the temperature of the specimen ) . 

1. THE KINETIC EQUATIONS FOR ELECTRONS 
AND PHONONS 

The linearized kinetic equations for the electron 
and phonon distribution functions, n ( p ) and N ( q), 
in the presence of a temperature gradient, a mag­
netic field directed along the z axis, and a chemi­
cal potential gradient V'Ji., have the form 

iJ (n- no) iJ (n- no) • f-1 W ( ) 1 ano v\IT 
at = - a.. w - ed ed n- no T X ax T 

an0 vV;.c \ d3q + axr+) (21tfi)" V p, P+q {[(Nq + I) (I- np) np+q- np 

X (I- np+q) N q]ll (e:P+q- e:p-Tiwq)+ [np+q (I - np) N -q 

-np (1-np+q) (N_q + l)]ll (e:P+q -e:p + Tiwq)}; 

a (N- No) -1 iJN0 s\IT \ 2d3p 
at =- (N- No) ftd + ~ ~ T + j(Z1t1iJ" Vp.p+q 

x[nP+q(l-np)(Nq+ 1)-np(l-np+q)Nq] 

By the substitutions 

n (p) =no (e:- pv, (p))andN(q) = N 0 (Tiwq- qv1 (q)) 

and for small v e and Vf, these equations take the 
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form 

.i (PVe) = - .i (pv,) w*- X v\IT- vV;.c - r-;/ w d (pv, I 
at \ T a,.. T , T T e e T ) 

I \ d"q {v• (p)- vf (q) [ n (x + ~) 
T ) (27t/i.)" V p, v+q T q n (x) (N (~) + I) 

X ll (e:p+q- e:~ + Tiwq) ]} ; 

_i{qvf). =\ 2d3p_{V,\P)P[n(x)(1-n(x-~)) 
at \ T j (21ti'i)3 T N (~\ 

n \X-i-!;) (i-n (x))JI vf (q) q n (x + ~) (1- n (x))} 
- N(~! --T- ---1~)--

v '( ) -1qvl "sVT x p, p+q o E;+q- s~ -tid T-:; -·r . (1) 

Here T is a quantity defining the phase of the 
electron in the Larmor orbit; w* = 21r/T0, where 
T 0 is the characteristic time for motion around 
the orbit, after which the momentum of the electron 
changes by a quantity of the order of the period of 
the reciprocal lattice or (in the case of a closed 
trajectory) returns to its initial value (see refer­
ences 2 and 3), p is the quasi-momentum of the 
electron, v = adap is its velocity, q is the 
quasi-momentum of the phonon, s = a (t'iw )/Bq is 
its group velocity, Wed ~ 1 and ted are the dime n­
sionless collision operator and the characteristic re­
laxation time of electrons on lattice defects and on 
each other. The latter is of the order nE/T2, 

where E is an energy of atomic orderS and can 
be shown to be important at low temperatures for 
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sufficiently pure metals; tfd is the relaxation 
time of phonons on lattice defects and on each other; 
~ = nwq /T; x = ( Ep - J.t )/T; T is the temperature 
in energy units. In the latter system, and in what 
follows, n ( x) and N ( ~ ) denote the equilibrium 
distributions for electrons and phonons. When Ve 
does not appear under the integral sign, the inelas­
ticity is taken into account in n ( x ± ~ ) , and is neg­
lected in the o -function, which is valid. The vec­
tors Ve (p) and Vf(P) have the meaning of drift 
velocities of electrons and phonons, respectively. 
Their interaction tends to equalize these velocities. 
In this case, the drag on the electrons by the pho­
nons is expressed by an integral containing (v e- Vf). 

If (for its estimate) we consider Ve -Vf to be 
constant, then the remaining integral I, multiplied 
by T/p, determines the order of magnitude of the 
reciprocal of the relaxation time for scattering of 
electrons on phonons in terms of the momentum 
t -1 
5 • 

The law of conservation of energy for ® » T 
» ms2 gives E (p + q) - E (p) = v • q + ! .6m;113 
x qaq/3 = 0. Here m(}f3 = 82E/8pa8P{3· We set 
q = <U + qll v/v, where q1·v = 0. Since q « mv, 
then, in first approximation, qll = 0, and in second, 
qll = - _6•m;~qaq{3 /2v, where the primes on the 
sums indicate that the directions of a and {3 are 
orthogonal to v. After integration over qll in I, 
we get an integral of the form 

~d2qJ.(qJ. +q 11 v;v)<P(q). (2) 

In <l>(q), we can set q = ql, and since <l>(q) 
= <I> (- q), there remains only the integral over the 
second component. Since Vp,p+q "' q, while qll 
"' qi, then t5 1 "' T5, i.e., actually, the time of 
equalization of the drift velocities of the electrons 
and phonons is connected with momentum relaxa­
tions (see references 5 - 7), which is physically 
understandable, since the drag on the electrons by 
the phonons takes place as a result of the change 
in their momentum due to interaction with the pho­
nons. The integral containing the difference 
Ve(p+q)- Ve(P) expresses the trend to equaliza­
tion of the drift velocities of electrons with differ­
ent momenta by the agency of their interaction with 
phonons. Since Ep+q- Ep = nwq, while the angular 
separation of the vectors p + q and p is insignifi­
cant, then this is actually the energy relaxation of 
electrons due to phonons. In a manner similar to 
the above, it is not difficult to show that the corre­
sponding reciprocal of the relaxation time is t3 1 

"'T3. 
The drift velocity of the phonon can be elimi­

nated from (1) in the stationary case. Inasmuch as 
we are interested here in the case in which the elec-

tron current j = 0, we can neglect the integral term 
containing Ve in the phonon equation. It can be 
shown that consideration of this term in the calcu­
lation of the electric conductivity leads to the 
"renormalization" of the relaxation time, so that 
the effective relaxation time of the electrons is 

't;-1 = t;-1 - oc{;-1trt{/, 

where ti-1 = r;;/ + t{/, t;-1 = r;;l + r;;r; 
tef is the relaxation time of electrons on phonons, 
tfe is the relaxation time of phonons on electrons, 
determined by the integral for Vf • q/T in the pho­
non equation (1), and C\' is a numerical coefficient. 
If the metal is "dirty," i.e., if tf « tfe, or te 
« tef• then Te = te. If the metal is "clean," then 
T e has the same temperature dependence as 
te ( tef), and differs only numerically from it. 

Physically, the latter effect represents the 
change in the scattering of electrons by phonons 
as a result of the fact that the drift velocity of the 
latter increases because of the presence of drift 
in the electrons ("mutual" drag). 

Turning to our case, we get for v e the equations 

iJ (pv,) _1 , {v•p} vVp. vVT VT 
(k T w* + t0 W T = - ----r- - x ----r- - T F ; (3) 

(4) 

Here 
-1 A -1 A -1 A 

t 0 W=fed Wed+fet W,f. 

We can get the order of the quantity F by equating 
the integral for it to the integral determining the 
relaxation time t 5 : 

F P t t-1 e t t-1 
~ q ,s 5 ~ s r t 5 • (5) 

2. SOLUTION OF THE KINETIC EQUATION IN 
THE CASE OF SCATTERING OF THE ELEC­
TRONS BY LATTICE DEFECTS OR BY EACH 
OTHER 

We must solve the equation 

a (pv•) * _1 , (pv,) vVT VT 
0"' T W + t0 W T =-X -----r--TF. (6) 

Solving it, we can find the current jjT) = .6!3ikY'kT; 
k 

here, the desired thermoelectric tensor Cl'ik• which 

is determined from the relation V'iJ.t =- e ,6aikY'kT 
k 

for the condition j = 0, is 

OCtk = - 2J au ~lk. 
l 
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The tensor <Yik is known (see references 2 and 3); · 
therefore it is necessary to find the tensor .Bik· 

We shall seek a solution of Eq. (6) in the form 

For 1/Ji, we obtain the equation 
aw. , 
;~ + loW(<ji;) = ioXV; + ioF;. (6') 

Here Yo= 1/w*to « 1. To each of the two terms of 
inhomogeneity in Eq. (6'), we can juxtapose 1/Jit• 
and 1/Jiz, respectively. 

In accord with this, we also have 

In this case, quantities with index (1) are defined 
directly by the effect of the temperature gradient 
on the electron, and those with index (2) by the 
drag of electrons by phonons. The asymptotic 
value of the tensor a< 0 was found in reference 4. 
If aik = y~ikaik' then the order of the a l1k2> can 
easily be estimated.* Let 

~)kl = io'il< uW, O;k = lo5il'Ctk; 

Then a<O ~ b<1>jec. But bo>;c is of the order of 
the ratio of the right sides of the kinetic equations 
determining ,a<0 and o-, multiplied by T/J.t (in 
view of the presence of the factor x in the inho­
mogeneity of the equation for ,a0 >) so that 

(7) 

Equating the same two terms in the inhomoge­
neity of the equation and taking (5) into account, 
and also the fact that F i is an (almost ) even 
function of x, we find 

s8if}L (e)~'t 
a<"J ~a<'l v T T;T~ a(J) T. t;,, (8) 

since s/v = (tis/a)a/tiv ~ ®/J.t (a is the lattice 
constant). If the phonons are scattered by the 
electrons,then tf~ (ti/®)J.t/T, t5 ~ (1i/®)(®/T) 5 

(see references 5 - 7), so that, 

(8') 

Therefore, for not very low temperatures, i.e., 

(9) 

the drag effect predominates even in those elements 
of the tensor aik in which the asymptotic values 
of af~ and afk> are identical in y0• But, as will 
be seen below, the asymptotic value (in y0) of 

"As m references 1-3, we denote by Yo the small ratio 
Yo = H0 / H, where H0 is a characteristic value of the magnetic 
field (for which the Larmor period is of the order of the relaxa­
time t0 ). 

afr is always smaller than the asymptotic value 
of afU. In what follows, only .afr and afr are 
computed. Therefore the index 2 is omitted for 
brevity. 

For calculation of .Bik• it is necessary to solve 
a'f, , 
a-r +loW (<ji,) = ioF;, (6") 

R ]" 2elo 1 ( ( d d an T 11eH ( ,r, d 
['ik = G~~ (2tr1i)" G.).) E Pz ae -c-.\ Vt't'k '· 

(10) 

Integration is carried out over all momentum space; 
G is the number of cells included in the limits of 
integration. As in references 2 and 3, it is neces­
sary to treat the following cases separately 
(jE-~-ti~T): 

1. The trajectories E = const, Pz = const are 
closed and lie within the limits of a single cell of 
the reciprocal lattice. 

2. There is a layer of open trajectories. 
3. The approximation to "critical" directions 

(see reference 3). 

1. Closed Trajectories Lying Within the Limits 
of a Single Cell 

As in reference 2, we seek 1/Ji in the form 
00 

1 . 'l n,1,(n). 
Cj!; o .. c LJ lo't'i , 

n=O 

We then obtain the set of recurrent equations 

a4~o) ;a,= o, a<ji)l) ;a-r + w (<J1)0)) = F,, 

(11) 

a<ji)n) J(h + w (<ji)n-I)) = 0 npn n > 2. (12) 

The periodicity in T serves as an additional con­
dition on these equations, i.e., 

Integration is carried out over T along the closed 
trajectory. Since all §FidT r= 0, then all 

<j1)0 l = C)0 l (s, Pz) =f=.O. 

We also take it into account that §vx,ydr ~ fdPy,x 
= 0; then the tensor in this case generally has the 
form 

!rob xx jobx11 job xz 

?ik = lrobyx jobyy Jobyz (14) 
bzx bZ!I /Jzz 

The symmetry properties of the crystal can change 
the asymptotic value of the tensor ,B. Thus, for ex­
ample, if there is mirror symmetry relative to the 
plane zx, then, inasmuch as both Vi and Fi are 
transformed in the symmetry transformation as Pi> 
and the operator 8/or ~ vy8/8px is odd, while W 
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is even relative to the transformation Py• Py 
-- -pY' -py., the equation for 1/Ji can be written 
in the form 

L (~;) = ioF;, where Lp11,p·11 (H)\=- L_p 11,-p•11 (-H), 

i.e., 
~x.z (py, H)= ~x.z (- py, -H), 

~~~ (p11 , H)=-~~~(- Pv• -H). 

Therefore f3xz, f3zx, f3xx, f3yy• {3zz are even, 
and f3xy, f3yx• f3zY' f3yz are odd functions of H, 
so that f3xz "' Yo ; f3zx "' Yo ; f3xx "' Y~ ; f3yy "' Yo ; 
f3zy...., y~. 

This result is found to be in agreement with the 
requirements imposed in the macroscopic theory 
on the tensor {3ik· Actually, if we write 

where Hzm is an antisymmetric tensor, the dual 
to the pseudovector H, and c is a tensor of the 
corresponding rank, and if we consider that, when 
H = ( 0, 0, H), only Hxy = - Hyx ;r. 0, then it is 
easy to see, from the presence of mirror symme­
try relative to the plane zx, that the components 
of the tensor f3ik which contain an even number 
of signs ik equal to y are even functions of H, 
and vice versa. 

Returning to the general case, we have (making 
use of the expression for a-1 from reference 3): 

axx axy axz 

ocik = ayx allY ayz (15) 
nzx nZJJ 0 7z 

The case in which the Fermi surface is closed and 
the number of electrons is equal to the number of 
holes should be specially noted. In such a case 
(see reference 2 ) , the asymptotic value of the 
tensor a is such that 

I -1 'To axx 'T;;-laxy 
-l 

~o axz 

I -I -I -I (16) (XiK = 'l' o a,1x 'To 0 v!! 'Yo ayz 

a z,Y azy an 

2. Open Trajectories 

Equations (12) must be solved in this case under 
the additional condition of finiteness, i.e., 

-,-- -- 1 • 
W (~1) = F1 , where i = lim 2- \ t'd-: 

't'-+00 "t" J 
-~ 

and integration is carried out over the entire tra­
jectory. This means that 

W (~}">) = 0 for n > 1. 

Generally, all Fi ,r. 0, so that all cf 0> ( E, Pz) 
;r. 0. However, if all trajectories have infinite ex­
tension in on~ direction, chosen to be the x axis, 

then 
Vx ~ hm ,--- dpy = 0 , -- . 1 ~ 

-r-+oo 2T , 

since Py changes within finite limits. Conse­
quently, in this case, 

;jobxx 

PtK = lbyx 
bzx 

jobxy jobxzl 

b!l!l byz I. 
bzy bzz ! 

The expressions for the aik have the form 

I -1 'l';;-laxy 
-I 

'l'o axx 'l'o axz I 
(XiK =1 ayx ayy ayz I· 

azx azy azz I 

3. Approximation to "Critical" Directions 

(17) 

{18) 

Let us consider the case here in accord with the 
classification given by I. M. Lifshitz and Peschan­
skil.3 For simplicity of calculation, we set W = 1. 

a) Approximation to an isolated direction, in 
which a layer of open trajectories appears. In this 
approximation, there are greatly extended trajec­
tories whose period of motion is To...., T0 /8, where 
8 is the angle between the direction of the magnetic 
field and the direction in which the open trajectories 
occur. 

The e<Iuation for 1/Ji has the form 

a~;/a-r-1-r~;=')'F;, r=-ro/to~ro'&. (19) 

Applying the Fourier method (see reference 2 ) , 
we obtain 

"--=-~!· !._\\dd aneH-ro f (o)p(o) 
,'tK (2n:h)3 a~G ~ .l E Pz ax c \vi K 

00 ~ (v<n)p(-n) ·+ 0 (-n)p(n)) +in (v\")p(-n) _ v (-n)p(n)) 1 
1 '\,1 I t !( l K l K L K \ 

T 1 11~1 - ----- ---·-- ;z' + 'l'" -----~ · 

(20) 
Here, vfn>, Fk_n> are the Fourier components of 
the corresponding quantities as functions of T. 

Taking it into account that v~n> ...., 8, while the 
factor 1/8 which comes from T 0, is compensated 
by the factor 1/G, and that v~0 > = v~0 > = 0, we 
obtain 

jobxx job xu jobxz 

?ik = b!iX bY !I byz 

bzx bzy b=z 

Here, all the bik are functions of the ratio T/ 

= Yo /8, while f3ik( oo) = const, and as T/ -- 0: 

bxx \I)! bX/1 (tJ) bxz (0) 

b;k = 'fjb~x ~b~y ·r;b~z 
b~x(O) b 2y(ll) bzz 

Hence we obtain for the tensor O!ik= 
i -1 ..,...-la 'T~laxz ! r.-, dxx l() .\"JJ 

Y.if: - 1 il{i.t: ilYll av:: , 
I 

j ax: azy a.z.z I 

(21) 

(22) 

(23) 
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where all aik are functions of 1). 

As 1J - oo, all aik- aik ( oo) = const, and as 
1)- 0, 

. lJUxx 

a;k = ayx (0) 

axz (0) 

lJUxy 

ayy (0) 

azy (0) 

lJaxz 

ay2 (0) 

azz (0), 

in agreement with Eqs. (15) and (18). 

(24) 

b) Approximation to the direction in which the 
layer of open trajectories disappears. If we de­
note by J. the angle between the direction of the 
magnetic field and the critical direction, then, 
since the contribution to the tensor l3ik from the 
open trajectories ~ J., in this case l3ik = gik 
+ J.dik• where the tensor gik has a structure of 
the type (14), and the tensor dik has the type (17). 
By means of Eq. (29) of reference 3, we get the 
following expression for aik: 

axx + &fo1Cxx axy + &jij1cxy axz + ~'l'o1 cxz 

rx;k = ayx aYY ayz (25) 

azx azy azz 

3. CASE OF SCATTERING OF ELECTRONS BY 
PHONONS 

In view of the presence of two relaxation times 
for electrons relative to phonons, tef (see Sec. 1 ) , 
it is necessary to investigate the role of the oper­
ators of relaxation for the direction w5 /t5 and 
the energy W 3 /t3 . If we introduce the function 
n1 = -Ve·P8n0 /ae:, and multiply the electron equa­
tion in the system (1) by an0 /ax, then the term 
containing Ve • (p+q)- Ve(P ), has the form 

~ M (xQ; x'Q') n1 (x'Q') dx'dQ' 

- n1 (xQ) ~ K (xQ; x"Q") dx"dQ". 

Here n is the set of angular coordinates of the 
momentum p. We write 

~M(xQ, x'Q')ni(x'Q')dx'dQ' 

= ~ M (xQ, x'Q') [n1 (x'Q')- n1 (x'Q)] 

x dx'dQ' + ~ dx' ~!VI (x!!., x'!.l.') n1 (x'Q) d!.l.'. 

The first of the integrals can be combined with 
W5, which represents a relaxation in direction, 
such that 

t;-1 W 3 (xQ, x'Q') = o (Q- Q') {~ M (xQ, x'.Q") dQ" 

- o (x- x') X ~ K (xQ, x"Q") dx"dQ"}. 

Here, 

M (xQ, x'Q') = V v.v·tJ. {N 0 (x'- x) :: i:\ o (x'- x- ~p·-p) 

+ N 0 (x- x') ex~-.:· :: i:~) II (x'- x + ~p·-p)}, 

K (xQ, x'Q') = V pp' tJ.•{ N 0 (x- x') n:o ~:1 o (x'- x -+- ~p·-p) 

+ N 0 (x'- x) e-<'-x no ((x')) o (x'- X- ~p'--p)} 
n0 x , 

(~ =number of states in the interval dxdQ ). 
It is easy to establish the fact that, with accu­

racy up to terms ~ T/J-t, we have K (xQ, x'Q') 
= M (x'Q, xQ' ), so that 

t;-1 W 3 (xQ, x'Q') = o (Q- Q') { L (x, x')- o (x- x') 

x ~ L(x", x)dx"}, 

~ ~ W 3 (xQ, x'Q') t;-1f (x') dx' dx- 0. (26) 

This property of the operator W3 expresses the 
fact that a change in the total number of electrons 
in a solid angle can be brought about only as a re­
sult of collisions with a change in momentum. 

We set n1 = <P (pz, T) X ( e:) 8n0 /8e:, which is 
possible in view of the o -like character of the 
function an0 I ae:. The current is 

j = (~:~)" ~ ~ dpzd-c ~ vrp (pz, -::)X (s) e:To a~:o ds 

= (~;~)" ~ ~ dpzd-c eH;o V {[L) (jl (pz-::) • 

since x ( e: ) can always be chosen in such a fashion 
that 

"an 
\ aeo z (s) dz = I. 
.J 

The kinetic equation for n1 has the form 

anl * + ,-1\\Y ( ) I t-Iw( ( ) - R ann ---a; w 5 5 n1 , a w s n1 - - 7k . (27) 

If R ( x) = R (- x), then the corresponding function 
n1(x) =n1(-x), since W(x, x') =W(-x, -x') 
(see reference 6 ) . 

Integrating Eq. (27) with respect to e: wit!:). ac­
count of Eq. (26), we obtain an equation for <P(PzT): 

(•J*iJrp/iJ-r + W' (rp)/f5 = R (0), W' (pz-c; p~-c') 

= ~ ~ dx' dxW' s(xpz:; x' p~-r') z (z') iJn0/iJs'. (28) 

Consequently, the function <P is determined by 
the directional relaxation time t5 . If R ( x) 
= - R ( - x), then, correspondingly, nt< - x) 
= -nt<x) and is determined from Eq. (27), where 
it is possible to discard the term W 5 /t5 since 
1/t5 « 1/t3 . 

Inasmuch as the inhomogeneity in the kinetic 
equation, which determines the electrical conduc­
tivity and the drag effect, is an even function of x, 
then the tensors O"ik and 13I~ contain y5 ~ 1/ wt5 , 
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and the coefficients in the expansion in powers of 
y5 are proportional to t 5 • In the calculation of 
the tensor .BI~, it is necessary to take it into ac­
count that the even part (in x) in the equation de­
termining the tensor is smaller than the odd by the 
factor T/Jl, but in the calculation of the current 
from the odd part, a factor of the same order of 
magnitude appears. 

We note that in view of the sharp· difference be­
tween t3 and t5 , a case can occur in which t 3 

<ted and t5 >ted· In such a case we must replace 
t5 by ted. Moreover, in certain magnetic fields it 
can happen that 1 I wt3 = y3 » 1, while y5 = ( wt5 ) -l 

» 1. In such a case, the asymptotic value will evi­
dently be an expansion in y5 and y31• We shall 
not linger over these cases. Then, 

~)V = iaftk (Ia) + fsgik (Is)· 

Since t5 » t 3 , i.e., y5 « y3 , then the zero order 
terms (in y) are proportional to t5, and terms 
of second order ~ fit3• The two first-order terms 
are equal, since y3t3 = y5t5 = yt. Therefore, the 
tensor ai~ remains the same as in Sec. 2, if we 
set Yo = y 5 in all formulas for ai~. The tensors 
,B~~ , and correspondingly, the a\~. have the follow­
ing form (see reference 4): 

1) The case of close trajectories lying within 
the limits of a single cell: 

~~ifsC XX 
jiCxy jfCXZ 

(I) 
'Yitscyy ~ik = jiCyx jlCyz (29) 

litczx -rtc2 Y lsczz 

Using <Tik from references 2 and 3 we get 

rJ.xx 'Ya0 xy 0 xz 
rx\1)-
lK- jsOyx allY ayz (30) 

1sazx js02 y 0 zz 

The tensor for ai~ has the form (15). In the case 
of a closed Fermi surface, for an equal number of 
electrons and holes, the ai~2 ) have the form (16) 
if we set Yo= y5• 

2) Open trajectories. In correspondence with 
the above, we have 

litacxx 1tcxy 1fCXZ 

~)1> = 1tc yx 15cYY lsc yz (31) 
1/CZX tf>c:zy fsczz 

'"{3')'5-Jaxx '"[-;laxy 
-1 

1s 0xz 

ll)kl = 1sayx aYY ayz (32) 
1•azx azy azz 

a!~ has the form (18) with Yo = y5• 

3) Approximation to the critical directions. 
a) Approximation to the direction in which the 

layer of open trajectories disappears. As above, 

in Sec. 2, ,Bf~ = gf~ + J-df~, while gf~ has the 

form of (29), and dH2 has the form of (31). Tak­
ing this into account, we get the following expres­
sion for aW: 

0xx + 'Ys1;-1.'}cxx 1saxy + ,'}151Cxy 0xz + .'}'l';-1cxz 
(l(l) = 

ik 1sayx aYY ayz 

jsazx + &1sczx j 5a 2y + &czy 0 zz 

af~ has the form of (25) with Yo = y 5• 

b) Approximation to the isolated direction in 
which a layer of open trajectories arises. If J-

(33) 

is the angle between the z axis and the critical 
direction, while ry3 = y 3 /J-, ry 5 = y 5 /J-, then the 
tensor af~ has a structure of the type (23), (24), 
if we set Yo = y 5, '1J = ry5 in the latter equations. 

In the approximation of the tensor af~ we con­
sider three regions: 

1) ry3 « 1; ry5 « 1. With consideration of the 
relation between y 3 and y 5, we get the expression 

(34) 

1tczx 'YiiCzy t 5c22 

for ,Blf2, and by means of aik ( y 5, ry5 ) from ref­
erence 3, we determine af~: 

0xx 1;-1'Y1s'Yisaxy 1;-1'Yis0 xz 

ocW = i3ayx aYY ayz 

1s0zx 'Yis02 y azz 

2) 'IJa. » 1; ry5 « 1. In this case, 

and correspondingly, 

1tcxy 

Is ( cyy + 'Yis'YioC~y) 
j1C2 y 

0xx + 'Yis'Yisbxx 1;;-1 (axy + 'Yis'Yiobxy) Y;-1'1)s0xz 

(35) 

(36) 

ocW = "(sayx ayy ayz • (3 7) 

1s'YI5°zx 'YisUzy Ozz 

3) 'IJa » 1; '1Js » 1. Under these conditions, 

"(;tac xx jiCxy jiCxz 

~W= 1tcyx t•cvy tscyz (38) 
1{CZX t 5czy lsczz 

-1 
'l'•Ys 0xx 1';-laxy 1';-laxz 

oc}1> = '!'sayx aYY ayz (39) 

'l'•0 zx azy a,, 

As is seen, the elements of the tensor af~ 
always have an asymptotic value (asymptotic in 
y and '1J) no higher than the asymptotic value of 
the corresponding elements of the tensor afU. 
Thus, as has already been pointed out, the coeffi­
cients in the expansion in y and '1J in a(2), (if 
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the phonons are scattered by the electrons ) are 
of order ( T /® )3 /e, while in a<0 , they are of 
order "' T /eJ.l. [ (7), (8')]; above the tempera­
ture Ty [Eq. (9)) the drag effect predominates, 
except for the case (37), when a<1> can exceed 
a<2> [Eqs. (23) and (24)]. 

In the isotropic model (for this the asymptotic 
values of a<2> and a 0 > coincide for scattering 
of electrons by other than phonons, expanding 

{3<1 ,2> = L:){3~1,2)'Yo· we get {3~2> /{3~1) = ( T /T~j> )2' 
r 

where 
r<r>~s 41 (r+2)-(1-r)o _, 1-r 

Y ~ • (n 1 nul'/, 1 (Ill' I mol (vIVo) 

'f, ((s I sn)3 n I n0 \'1, d 
X vIvo ) eg; 

a= -- d(lnt 0)/d(lnp). 

Here n is the concentration of electrons, m 0 

= 10-27 gm; 
3 1 OS -1 • 1 Q8 -1 s0 = · em-sec , v0 = em-sec , 

n0 = 3 · I 022 em - 3 • 
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