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The effect of impact ionization processes on the distribution function for electrons and holes 
in a strong electric field is studied. It is shown that the energy dependence of the impact 
ionization probability near the threshold is essentially different for crystals with small and 
high dielectric constants; the solution of the kinetic equation is considered in both these 
cases. Expressions are obtained for the equilibrium number of carriers in a strong field, 
the impact-ionization coefficient, the critical field, etc. The dependence of the breakdown 
field on temperature, on specimen thickness, and on the electron-lattice interaction law is 
found. The connection of the expressions obtained with the known breakdown criteria of 
Frohlich and Hippe! is established. It is shown that increasing the electric field causes a 
decrease in the recombination speed, as a result of which the equilibrium number of car­
riers starts growing as the field increases long before the appearance of impact ionization. 

T ~p 
HE electric breakdown of semiconductors ap- f (P) = f o (x) + m- ft(x) + ... 

parently takes place as a result of the unlimited 
growth of carrier concentration with increasing 
field strength.1 In a stationary state the number 
of carriers, n, is determined by the relationship 

n{wi(E,T)-wr(n,E,T)}-I-n0 (E,T)=0, (1) 

eEP -: (x) dfo (x) 
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[ (. E ) 2 J-2 (x) o 1 J dfo (x) 
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1 dS (x) 
-,-1 -d-- [wi(x) + Wr (x)] fo (x) +no (x, E, T) 
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+ N, ~ w, (x, x') fo (x') x"1•dx' = 0, 
1 
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where Wi(E, T) and wr(n, E, T) are the impact 
ionization and recombination probabilities averaged 
over the distribution function, n0 ( E, T) is the 
number of carriers of a given type created in unit 
volume of the semiconductor in unit time by ther­
mal ionization and direct field extraction of valence 
electrons into the conduction band, E is the field 
strength and T the temperature. 

With increasing field, as will be shown below, 
wr decreases but Wi grows rapidly and, conse­
quently, n increases. In the field Ec for which 
Wi = wr the carrier concentration tends to infinity, 
which is the breakdown criterion for the case given. 
Thus, quantitative consideration of the behavior of 
a semiconductor in the pre-breakdown region, as 
well as a study of the mechanism of breakdown 
itself, requires the solution of the kinetic equation 
taking into account the processes of impact ioni­
zation and recombination. This is the aim of the 
present work. 

where x = €/Ei; € = P 2/2m is the energy; P is 
the momentum; €i is the threshold ionization en­
ergy; T-1 is the frequency of collision with pho­
nons; Wi(X) and wr(x) are the total probabilities 
of impact ionization and recombination; Wi(x, x') 
is the probability of the creation by ionization of a 
carrier with energy x by a carrier with initial 
energy x', A.(x)=Z(x)/Z(1); l(x)=PT(x)/m 

Following the usual method, 2 it is not difficult 
to obtain the following system of equations for de­
termining the symmetric f0 ( € ) and anti symmetric 
f1 ( € ) parts of the distribution function, f ( P ) 

509 

is the mean free path; S (x) is the carrier cur­
rent through the surface € ( P) = xq, caused by 
the field and phonon interactions; % Ni is the total 
number of states with energy € < q; 

2P /2P 
il (x) = 4m ~ B (q) n(t)qqdq ~ B (q) (I + 2N q) q3dq 

0 0 

(5) 
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2P I 
"l(x) = ~B(q)(hwq)2 (2Nq + l)qdq 

0 

2P 

2si ~ B (q) hwqqdq, 
0 

2P ~e 
1:-1 (x) = 4"~~s \ B (q) (2N q + I) q8dq, E; = el (e;/ . (6) 

0 

Here, q, wq and Nq are the momentum, fre­
quency, and number of phonons; Bq is the square 
of the matrix element of the interaction of an elec­
tron with a phonon; V is the normalization volume; 
Ei is the field in which the mean energy of the car­
riers becomes of the order Ei; 6 = 6 (1 ). The 
small value of 6, the average fraction of the en­
ergy lost by an electron in one collision with the 
lattice, is a condition for the applicability of the 
approximation considered. For the parameter 
values of interest to us, 6 "' 10-2• The small 
quantity f/ (x) we will neglect henceforth. For 
those valence crystals in which the electrons in­
teract mainly with acoustic phonons Bac ( q) "' q 
and nwaC = cq, where C is the velocity of sound. 
When the interaction is with optical phonons 
Bop(q) = const. and nwf = nw0 = const. 

From (5) and (6) it follows that 

Oac (x) = 4mc2 I kT, Aac (x) = I, 

m· = V12mc2 I kT 2t/ el, 

(7) 

Before proceeding to the solution of Eqs. (2) -
(4), we make some remarks on the choice of the 
probabilities wr(x), Wi(x) and wi(x,x'). The 
effect of recombination on the form of the distri­
bution function is insignificant in view of the in­
equality WrT « 1, which is well fulfilled. There­
fore, the corresponding term in (4) can be consid­
ered as a small contribution and the fact that it is 
in general nonlinear has no effect. In the majority 
of cases, however, an important part is played by 
the so-called "radiationless" recombination asso­
ciated with carrier capture into local states. Its 
probability for a sufficiently large number of car­
riers can be considered as independent of concen­
tration. Such a process can only take place for 
very slow carriers ( E ~ tiwm, where wm is the 
maximum lattice vibration frequency), which in 
fact are not included in the conditions considered, 
since for them 6 (x) is not small. Therefore, it 
is most natural to include radiationless recombina­
tion, not in (4), but in the boundary condition for 
S ( x) at x = 0. The last two terms in (4) can be 
taken into account in a similar way. In fact, the 

probability of creation of a carrier with energy 
E by thermal ionization and by the field decreases 
exponentially with increase of E. Likewise, the 
number of carriers with energies essentially ex­
ceeding the ionization threshold is exponentially 
small. Therefore, both n0 ( E, T ) and Wi ( x, x' ) 
cause the creation of only very slow carriers 
x « 1, and we include them only in the boundary 
condition 

S (0) • of (O) + no (E, 7') ---w, o N 
N i i 

co co 

+ ~ N; ~ x'l•dx ~ w}I·2> (x, x') fo (x') x"l•dx' = 0, 
e,h o 1 

co 

w~ = ~ w, (x) x'f, dx, (8) 
0 

where the summation takes into account the pres­
ence of two carrier types and the indices 1 and 2 
refer to the creation probability of carriers of the 
same or opposite charge. 

The quantity Wi(x), as shown in Appendix 1, 
can increase near the threshold either linearly or 
quadratically, depending upon whether the value 
of the dielectric constant of the crystal is small 
or large, i.e., 

w;(x) = p (x- I )i ki (x) I 1: (x), j = I, 2, 

n=l 

The dimensionless quantity p thus defined is 
rather large ( p "' 102 ) • 

(9) 

Equations (3) and (4) take an essentially differ­
ent form in the regions x < 1 and x > 1. It is 
natural, therefore, to solve them in each of these 
regions separately and then match the solutions 
obtained at x = 1. Below the ionization potential 
Wi(x) = 0, wr(x) is a small correction, and all 
the remaining terms in the right half of (4) do not 
depend on the value of f0(x) in this region. Equa­
tions (3) and (4) are consequently integrated in the 
general form. However, on the basis of the re­
marks made above, we will use a simplified form 
of the solution in which the value f/ (x) is neg­
lected, and wr(x), Wi(X, x' ), and no (x, E, T) 
are taken into account only in the boundary con­
dition (8). 

No 
S(x)=const=- "(~J)·cr(E)fo(l), 

1 

f" (x) = fo (I) exp { ( i-J" ~ ~~a(~;;~ dx'} 
X 

{ 1 E, )" . ~ -l (Ei )2 ~ to (t) x 1 + \y -::;(£) J exp - y Fi(t)& 
X X 

l dx' } 
dt J x'f.. (x') . 

(10) 
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The constants of integration f0 ( 1 ) and a ( E ) 
must be determined from the boundary conditions. 
Thevalueof a(E) =-S(1)T(1)/Ni0f0(1), giv­
ing the mean probability of impact ionization, is 
simply determined, as will be shown below, by 
solving the equation in the region x > 1. Knowing 
this value is sufficient to determine all the char­
acteristics of the semiconductor in the strong 
electric field. In fact, we show below that in the 
region x > 1 the distribution function falls prac­
tically to zero for x -1 ~ ( o/p )1/4 ../ E/Ei = a. 
Consequently, the contribution of this region to all 
the observed quantities (number of carriers, con­
ductivity, mean energy) is of the order a « 1. In 
other words, all these quantities can be evaluated 
using the function ( 10) by averaging over the region 
x < 1. The single quantity completely determined 
by the distribution of carriers over the ionization 
potential is the mean probability of impact ioniza­
tion. But it is equal at the same time to - S ( 1) 
= Nioa(E)f0(1)/T(1), which is easy to see by 
integrating (4) from 1 to oo , and omitting the last 
three terms, which are insignificantly small in 
this region. Thus, all the information which we 
must obtain from the solution of the kinetic equa­
tion in the region x > 1 is included in the function 
a ( E ) , proportional to the ratio S ( x) /f0 ( x) at 
x=l. 

The total number of carriers n and the mean 
impact ionization and recombination probabilities 
are determined from the following relationships 

n=Nirf0 (x)x'l•dx=f0 (l)N;exp [(u:;r]{cp~J} (t) 
0 

(11) 

exp [- (uE,. 1 E)2 ] X . 
'P~)l (E! E;l + (E; I E)2 a (El exp [- (uEi I E)2] 'PlJ} (E I Ei) ' 

(12) 

-- N. o w, (E) =--':.. w,fo (0) 
n 

0 1 + (Ei I El2 a (E) exp [- (uEi I E)2] C (E IE;) 

= w, <p,~> (E IE;) + (Ei I E) 2 a (E) exp [- (uE;iE) 2 j <p\~~(E!E;)' 
(13) 

1 

u2 = \ xa (xl d 
~ t-2 (x) o X, 

0 

1 X 

\ [ 1 \' x'o (x') d , J dx 
~ (z) = .) exp Z2 .\ 1.2 (x') o x xt- (x) ' (14) 

0 0 

1 X 

cpk1l (z) = ~ exp [ - z-2 ~ ~~~~;;~ dx' J xkdx, 
0 0 

1 x x' 

cpk2l (z) = L,_dtx) ~ exp [- z-2 ~ ~:~;.:;·~ dx" J x'kdx'. (15) 
0 0 X 

The integral t ( z ) in general diverges at the 
lower limit. This is associated with the fact that 
we have considered in (8) the number of recombi­
nations as proportional to f0 ( 0 ) . In fact, as fol­
lows from the reasons given, this number is de­
termined by the mean value of f0 ( E ) in the region 
of very small energies ( € ~ t'iwm). Consideration 
of this fact should lead to the exclusion of the in­
tegral for x"" fiwm/Ei. The exact value of this 
limit for calculating t (z) has no significance, 
since the divergence of the integral is logarithmic. 

Using the expressions (11)- (13) and the evident 
relationships 

~ S (1) = N; ~ w;(x) fo (x) x'"dx, 

00 

N; ~ w\1' (x, x') x'" dx 
0 

00 

= 2N; ~ w?' (x, x') x'1• dx = 2w; (x'), (16) 

the boundary condition (8) can be rewritten in a 
form completely analogous to relation (1) (index 
e refers to electrons and h to holes ) , 
[w,. (E)- W;e (£)] n, (E)- W;h (E) nh (E)- n 0, (E. T) = 0, 

[Writ (E)- Wih (E)] nh (E)- W;e (fi) ne (E)- noh (E, T) = 0. 

(17) 
If w~ can be taken as independent of n, then 

(see reference 4 ) 

ne (E) = n0e (E, T) 1 + (n0h (E, T) I n0e (E, T) -1) 'h (E) 
w,.(E) 1 r 8 (E)-rh(E) 

where 
W;(E) 

r (E)= (18) 
w, (E) 

We study the behavior of this expression on in­
creasing the field. In the region E « Ei, we have 
r (E) « 1 and (18) takes the usual form n (E) 
= n0 /wr(E). Thus, the growth of n is determined 
mainly by the function cp ~~~ ( E/Ei) [we notice that 
a ( E ) becomes of the order of unity only when E 
is comparable with Ei ] . In particular, for the 
cases mentioned above, involving acoustical and 
optical phonons in valence crystals, n is propor­
tional to E312 and E3 respectively. This behavior 
is occasioned by the fact that when the field becomes 
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sufficiently large (E .<:.103 v/cm), the mean elec­
tron energy starts to increase, the relative number 
of slower electrons decreases, and there is an as­
sociated decrease in the recombination velocity. 
When the field approximates to Ei ~ 105 v/cm, 
Wi ( E ) begins to increase rapidly and at a field 
Ec, determined by the condition 

fe (Ec) + fh (Ec) = 1, (19) 

breakdown occurs. As a rule, the values of Ei 
are different for electrons and holes, therefore 
one of the quantities r ( E ) is much greater than 
the other and the condition of breakdown takes the 
form r ( Ec ) = 1. The carrier type for which the 
value Ei is smaller is taken here. A direct com­
parison of (12) and (13) shows that r ( Ei) 
~ o/w~ T » 1 and, consequently, Ec < Ei. But 
the field dependence of all the quantities entering 
into these formulae is small compared with the 
exponential, and in the zero-order approximation 
we have 

o (E) o [ (E. )2 
Ec = uE; In-'lz {w~ -rc(i) I + E: cr (Ec) exp 

(.Ec)]-1} o XC y --:::::;u£; In-';, - 0 -. 

' ' ~ w~ 
(20) 

The value of w~ is of the order (tiwm/Ei)312/Tr 
where Tr is the recombination lifetime of carri­
ers when the field is absent. Taking this lifetime 
as of the order of a microsecond, and T ~ 10-12 

sec, we obtain the following estimate of the criti­
cal field Ec ~ Eiu/5 (see reference 5). 

If the region in which the field acts is sufficiently 
small ( ~ 1 em), then the lifetime of carriers is 
determined not by recombination but by their de­
parture from this region. The carrier concentra­
tion depends in this case on the distance t from 
the boundary of the specimen and the number of 
carriers n0 flowing through this boundary in unit 
time1 (noh = 0): 

lloe 
ne (£, t) = --exp [xe (£) t] 

ved • 

X xe(E)exp[-x,(E)L-x11(E)I]-xh(E)exp [-x11(E)L-xe (E) I] 

xe (E) exp [- x. (E) L]- x1, (E) exp [- x 11 (E) L] 

(21) 

Here v d is the drift velocity of the carriers in 
the field E, L is the dimension of the region, and 
K (E) is the so-called impact-ionization coefficient. 

U!.j (E) V- E; 
x (E) == --v:;- = iTT) ycr (£) 

exp [- (uE; j E) 2 ] 

X -
q>(I)(£ I £ 1)+ (E£1E) 2o(E)cxp[-- (uE;fE)2 J tp<2l(£ ;E1), (22) 

(· [ ~ x'o (x') ] d cp(l) (z) = ~ exp - z-2 ~ 1.2 (x')o dx' dx[xf-. (x)] dx, 
0 0 

1 

~ dx cp<2l (z) = -­xt- (x) 
0 

x x' 

\' [ - 2 \' x"o (x") ] d 
X ~ exp -z ~ 1.2 (x") 0 dx" dx' [x't- (x')l dx'. 

0 X (23) 

For the particular cases corresponding to (7) 

(!) ) v;; I (2) -v;- zr' I"'- ~~-) ,dt 
Cflac (z = 27 <I> (z ), Cflac (z) = ~ ~ e '-V ( r t 1 , 

0 

I 1 
z =Viz· cp~~ (z) =Z~ (I - exp [- z-21), 

cp~~ (z) = z2 {Ei (z-2) + 2In z- C}, (24) 

where C!> ( z ) is the error integral, Ei ( z ) is the 
exponential integral function, and C is Euler's 
constant (C ~ 0.577 ). 

The breakdown field for the limited region is 
determined according to (21) by the condition 

(xe (Ec)- xh (Ec)l L = In lxh(Ec)/xe(Ec)l (25) 

and is thus a function of the ratio -l3o L/l ( 1 ). As 
long as this ratio is small we have 

Ec (L) = uE; In-'-'• {y3f;L ~ 0 (Ec) 
l (1) Ec In [x11 ( Ec)/x,(Ec)l 

X [ cp<l) (~~ ) + ( ~; r cr (Ec) exp [ - ( ~~ n cp<2l ( ~:) r1
} 

= uE; In-'/, V3l\L 
l ( 1) . (26) 

The temperature dependence of Ec is deter­
mined mainly by the quantity Ei ~ f6 /l ( 1). For 
acoustical phonons Ec ~ ..fT, for optical Ec 
~ coth1f2 (tiw0 /kT). 

In conclusion, we make a series of remarks on 
the connection of the parameter we have introduced, 
u, with the known breakdown criteria of Frohlich 
and Rippel. Since A. ( 1) = 1 the integrand of u2 

in (14) can be either of the order of unity if A. ( x) 
does not increase with increasing energy, or in­
creases sufficiently slowly, or much greater than 
unity, if the mean free path increases rapidly with 
growth of x. In the first case, which apparently, 
obtains always in valence crystals, breakdown 
occurs in fields of the order Ei, i.e., when the 
mean carrier energy becomes of the order Ei. 
In form this condition agrees with Frohlich's cri­
terion,6 although the primary idea of this criterion 
was somewhat different. In the second case, which 
has been well studied and of which ionic crystals 
are an example, the integrand of u2 in (14) attains 
a maximum for small energies and, therefore, 
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Ec"' uEi » Ei. In ionic crystals, for energies 
E ~ tiw0, the mean free path A. (x) is proportional 
to x, and consequently u "' [ q /tiw0 ] 1/l. The 
breakdown field is determined by the relationship 

In other words, breakdown occurs in fields for 
which eEcl "' tiw0 for carriers with energy E 

"' tiw0, which agrees qualitatively with Rippel's 
criterion. 9 

Starting from (5) and (6), it is not difficult to 
verify that Frohlich's criterion is applicable to 
crystals in which B ( q) for q ----.. 0 increases 
less rapidly than [ q ( 1 + 2Nq)) - 1, and Rippel's 
criterion applies in the opposite case. 

We proceed now to the solution of our basic 
problem - finding the distribution function in the 
region x > 1 where the process of impact ioniza­
tion is important. It will be convenient here to 
introduce new units of energy and current 

x-1 
u=a;· (28) 

~~ = pa.f. (29) 

The system (3) and (4), expressed in these vari­
ables, takes the following form: 

ds (y) _ xki(x) yif (y) = O 
dy A (x) 0 ' 

xA (x) dfo (y) x25 (x) . 
1 + ~ikf (x) ;yf li!J + 'li A (x) 5 fo lY)- s (y) = 0. 

(30a) 

(30b) 

An essential fact, on which all further discussion 
is based, is the smallness of a, evident directly 
from (29). In the most interesting region of the 
field a ~ 0 .I. The functions f0 ( x ) and S ( x) 
are essentially different from zero only in the 
narrow region x- 1 ~ a, outside which they fall 
off exponentially 0 In this region the coefficients 
of (30), in the arguments of which the substitution 
of y for x has not been made, are very slowly 
changing functions of y and with great accuracy 
can be taken as the first terms of corresponding 
series of degree x - 1 = ay. In the zero order 
approximation in a, which we mainly use, all 
these are unity. Further, in this approximation, 
(30) can be solved exactly only in particular -
although perhaps the most interesting - cases. 
We therefore now describe a general method al­
lowing us to determine with adequate accuracy 
the quantity u ( E ) of direct interest to us. 

Equations (30) for any values of the parameters 
have two linearly independent solutions; one ex­
ponentially decreasing at infinity, the other in­
creasing. Apparently, only the first of these is 

physically permissible. It is determined to within 
an arbitrary multiplier, but the ratio of s ( y) to 
f0(y) at any point, including at y = 0, is strictly 
defined. Therefore, the requirement of a solution 
decreasing at infinity is equivalent to the problem 
of determining the value of u ( E ) . We eliminate 
from (30) the function f0 (y). Then for the current 
s ( y) we obtain a second-order equation 

d { A (x) . /fF(y) ds (y)} 
dy xk1 (x) yl dy 

- 1 + ~ ikJ(x) yf /1 F(y) s (y) = 0, 
xf... (x) 

y 

F (y) = ~ ;;~;;'~ [I+ ~1kj(x') y'i] dy'. 
0 

(31) 

The quantity u (E) which is sought is derived 
from its solution in the following manner: 

a (E) = -_!__lim { xkf (x) yi ~} 
'TJ u~ o A (x) ds(y)jdy 

{32) 

and is a function of the parameters f3j and Yj. 
Instead, to find this function, we invert the prob­
lem, take fixed values of u, and seek the inverse 
function f3j = f3j ( u, Yj). In these circumstances 
(31) appears as a typical eigenvalue problem; the 
given boundary conditions at y = 0 [Eq. (32)) and 
at infinity [ s (y) ----.. 0) require the finding of the 
value of the parameter f3j, for which the equation 
has a nontrivial solution. Solving then the expres­
sion obtained for u, we find the relationship of 
importance to us u = u ( f3j, Yj ) = u ( E ) . The eigen­
value of interest to us must, apparently, be the 
smallest, since, from its physical meaning, the 
function f0(y) cannot tend to zero anywhere ex­
cept at infinity. But, from (30a) and the conditions 
xkj (x )/A. (x) > 0 and s ( oo) = 0 it follows that 
s (y) also has no zeros in the interval ( 0, oo). 

These properties, by virtue of the oscillation 
theorem, are possessed only by the eigenfunction 
corresponding to the lowest eigenvalue 0 

One of the most accurate and at the same time 
simplest ways of finding the lowest eigenvalue is 
the variational method. Equation (31) with the 
boundary condition (32) is equivalent to the follow­
ing variational problem:10 

'( f A (x) [ds (yri2 s2(ti) 1 Yj F(y) ~<QL 
.\txkj(X)!fj ---;ty.J + xx-{x)JC dij- O'jj 

- '(> 1= min "----------------­
":: h. (x) y. F(y) 
\ -,-1 - (' I j "(!!) d!J 

! .) xA (x) !I' 
(33) 

0 

with the additional condition that only functions 
satisfying (32) are permissible. The eigenvalue 
is obtained by this method rather accurately even 
when the variational functions are only rough ap­
proximations to the true solution. In the problem 
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considered, however, one can also hope to obtain 
a reasonable approximation for the function (al­
though this is not a necessity), since its quanti­
tative behavior is very simple. Directly from (31) 
it is apparent that s (y) is a smooth function 
monotonically decreasing with increase of y. 

Evaluation of the integrals entering into (33) 
and the subsequent solution requires as a rule 
rather cumbersome expressions. Therefore we 
will utilize this method only in cases when an ac­
curate solution cannot be found. 

We proceed now to the actual solution of (30) 
in different cases. 

I. j = 1. As already remarked above, this case 
corresponds to semiconductors with not very large 
dielectric constants (p. "'1 ). In the null approxi­
mation with respect to a, the system (30) takes 
the following form 

ds (y) 
dg'- Yfo (y) = 0, 

1 dfo(Y) 0 
1+~1Y dg' + 'rdo (y)- s (y) = • (34) 

The integration of these equations is carried out 
in Appendix II and leads to the following results: 

f0 (g)= c;~t { W + (z2) + pW _(z2)}exp {- ! ~1'r1 (u + 2~1 ) 2 } • 

(35) 

_ _1_ {W +(z2)-pW _(z2) _ 'V~11 } 
s(y)- -y-~ W+(z')+pW_(z1) -2- fo(Y), 

where 

z = ~¥·{u+ 2~1 ( 1 + ~~r~ )} , 

W::~:(x) = Wp2±!,!(x) is the so-called Whittaker 
function. From (35) and (36) it follows that 

a (E) = _1_ {W +<z~)-pW _(z~) _ ~ 11 } 
~ W+(zg>+pW_(z~) 2 ' 

4+~1"(2 
where z0 = 2p \ 

4-~1'11 

(36) 

(37) 

The various limiting cases of these formulae 
are also treated in Appendix II. Here we only re­
mark that the quantity .Bt'Y~ = o ( Ei /E )2 for the 
fields of interest to us is small, which allows for­
mulae (35)- (37) to be greatly simplified. 

II. j = 2. The case of large values of the di­
electric permittivity. In Appendix I it is shown 
that p. can be considered as large if the condition 

(38) 

is satisfied, where e is the electronic charge. By 
inspection this criterion can be interpreted as fol­
lows; the quantity p. is considered large in crys-

tals in which the binding energy of Coulombic lev­
els me4/p.2li2 is smaller than the width of the re­
gion Cl!Ei where impact ionization takes place. In 
the semiconductors of most interest -germanium 
and silicon - the binding energy of the Coulomb 
levels is about 10-2 ev, and the quantity aq"' 0.1 
ev. It is natural, therefore, to suppose that they 
belong to the case j = 2. The intermediate case 
when 

wi(x) = ~~t) (x-1) + c1 (x -1)2] and ac1 ~I, 

also leads to the case j = 2 by the transformation 
y' = y + 1/2ac1 and, therefore, will not detain us. 

Putting j = 2 in the original system (30) gives 

ds (y) 2 0 dY - Y fo(Y)= • 
1 dfo(Y) ( ) 0 

1+~2y2 ([y + 'r2fo(Y)- S Y = · 
(39) 

It is not possible to find the general solution of 
these equations for arbitrary values of the param­
eters. We proceed, therefore, in the following 
manner: we divide the integral of possible values 
of the field into two partially over lapping regions, 
in one of which ,82 « 1, and in the other y 2 « 1. 
In the first region, which is apparently the one of 
greater interest, we find an analytical solution of 
(39), and in the second utilize the general method 
described above for determining the function a (E). 

We will start with a proof that these regions do, 
in fact, overlap, and thus the combination of the 
solutions we obtain contains the solution of the 
problem for any values of the parameters E and 
p. To do this, we remark that the product ,e3(2y2 
"' fP62 « 1, and therefore for all values of E 
one of the quantities ,82 and y2 must be small. 
The regions overlap when ,82 "' y2 "' (po2 )1/ 5 < 1, 
although the margin in the latter inequality is not 
very large. The considerations given have an ob­
vious physical significance. The energy relaxa­
tion time due to collisions with phonons is much 
greater than the momentum relaxation time. In 
ionization collisions these times are of the same 
order. Therefore, if the ionization processes 
play an important role in establishing momentum 
equilibrium ( ,82 .<!. 1 ) , then the energy relaxation 
is determined only by them ( y2 « 1 ) . On the 
other hand, if phonons make a significant contri­
bution to establishing energy equilibrium ( y2 .<!. 1 ) , 
then the momentum loss in ionization for time T 

is insignificantly small ( ,82 « 1 ) . The region 
,82 « 1 is of the greatest interest, since it corre­
sponds to a field E < Ei, and in general this con­
dition, as was shown above, is satisfied even by 
breakdown fields. We commence the discussion 
with this case. 

a) ,82 « 1. Region of comparatively weak fields. 
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In the zeroth approximation with respect to a 2 and 
{32 (the method used, taking into account the corre­
sponding corrections, is given in Appendix III) a 
second-order equation for f0(y) can be obtained 
from (39): 

d2fo (Y)!dY2 + 'hdfo (y) I dy- Y2f0(Y) = 0. (40) 

By a series of elementary substitutions this can 
be reduced to the Whittaker equation and its solu­
tion takes the following form: 

f 0 (y) = canst y-'f, exp { - 1/ 2'r2Y} W -<v.t4)','1• (Y2). (41) 

Using the known behavior of the Whittaker func­
tion, it is not difficult to discover the behavior of 
fo(Y) at zero and at infinity: 

Y > 1: f o (y) = canst y-<v•14>'-'1• exp {- 1/2 (Y2 + Y2Y)}, (42) 

y < 1: fo (y) ~canst { f(s/~~~~116 ) ( 1-{ "f2Y) 

f(-1/2) } + re;,+i~/16) Y + O(y2
) • (43) 

With the help of the last formulae and the second of 
Eqs. (39) the quantity a (E) of interest to us can 
be determined: 

fJ E - - __!_ {__!!___ In } = 2_ f(s;, +"1'~/16) 1 
( ) - "1'2 dy f 0 (y) + 'h u=o 12 f(l/•+"1'~/16) 2 · 

In the limiting cases of small ( y2 » 1 ) and 
large ( y2 « 1 ) fields we have 

(44) 

211: = (2p/'6) (E I E1)&, 12 ~ 1 

a (E)= {2 qs;,) _ 2 qs;,) (.f!_)''•(..E_)''• (45) 
"1'2 qt;,)- qt;,) o E, , "1'2 ~ 1. 

The distribution function (41) in the latter case 
( y2 « 1 ) is close to that obtained by Heller .11 

b) y2 « 1. Region of very strong fields. In the 
zero approximation with respect to a 2 and y 2 we 
must solve the following variational problem: 

00 

~ {(y-1dsjdyJ2+ s2(y)}dy- s2(0)/"1'2a 

-~2 = min..::.o __ ----:-:oo:-------­

~ y2s2 (y) dy 

0 

lim {-1_ds(y) }-- _1_ (46) 
u~ o y2s(y) dy - 12a • 

The detailed method of solution is given in Ap­
pendix III. Here we confine ourselves to a sum­
mary of the results. The connection between the 
quantity g = ( y 2a) -2/s and {32 is given in para­
metric form by the two relationships 

~2 = g {g2~1 (v)- ~2 (v)}, 

where 

g2 = d<jl2 (v) / d<jl1(v) , 
dv dv (47) 

,f, (v) = V sin 1tV [ 8 (v) [ (4v) 
'~'1 1t P(2v)f(3v) ' 

,f, ( ) = [ V sin 1tV r 2 ( >]'(, f (4v) f (v/3)f2 ( 4vj3) f (7v/3) • (48) 
'1'2 'I 3n 'I f(8vj3) f(v)f2(2vJf(.3v) 

The corresponding function s (y) takes the form 

s (y) = z•K. (z), - [ 22VV Sin 1t\l r 2 ( >]1/2V S/2V 
Z- 3na 'I Y ' (49) 

where Kv(z) is the Macdonald function. v varies 
from ! to !. In the limiting case when {32 - 0, 
v tends to ! and the solution (49) agrees with that 
which is obtained from (41) in the limit as y2 - 0. 
Thus, the solutions we have obtained in fact join 
up in the region where the conditions {32 « 1 and 
y2 « 1 are simultaneously satisfied. In the other 
limiting case when v- !. g tends to infinity. 
Thus, {32 "' g3 "' ( y2a) -2. In fact, for very large 
fields 

(50) 

APPENDIX I 

The probability of the creation of electrons with 
momenta p1 and p2 and a hole with momentum p3, 

due to an ionizing collision of an electron with an 
original momentum p0, can always be written in 
the form 

(2~t/n) / M (Po; P1• P2) /2 o [se (Po)- Be (P1)- Be (P2)- sh (Ps)l 
X o [(Po- P1- P2- Ps)/n]. 

Hence, the following expression is obtained for the 
total ionization probability: 

w, (so) = 2; ys 

X ~ i M(po; P1o P2) 12 o [so- Se (Pl)- Ee (p2)- sh (Pa)l 

(A.1) 

All the conservation laws can be satisfied only 
for sufficiently large values of p0• The ionization 
threshold is determined by the condition 

S; =Be (p;) = Smtn (p;) 

=min {se (P1) + s. (p2) + sh (p,- P1- P2)}. 

The condition of a minimum in the right-hand side 
of the equality means that at the threshold 'V'Ee(P1 ) 

= 'V'Ee(P2) = 'V'Eh (Pa) = v, i.e., the speeds of all the 
final particles are equal. Close to the threshold 
the argument of the energy o -function can be de­
veloped in a power series of the departure of the 
momenta from their values Pm (Po) determined 
from the minimum condition written down above. 
The coefficients of the corresponding quadratic 
form, after transforming to principal axes, we 
will label mk.-1(p0 ). After introducing new vari­
ables of integration according to the formulae 

Pk- Pkm (Po) = V 2m~(Po) [se (Po)- Bmtn (Po)] ltk 
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etc., (A.1) acquires the following form: 

In the Born approximation M(p0, p1, p2 ) is 
simply the matrix element of the corresponding 
interaction energy. Since the momenta which are 
exchanged by the particles participating in the re­
action are of the order ..) mq, the collision param­
eters making the principal contribution to ioniza­
tion at the threshold are of the order n/..J mq . 
In this region the interaction potential must be of 
Coulomb order e2/r, since the polarization of 
the medium only occurs at large distances. There­
fore 

e2 - 1i3 1 e21i2 

M~-llme;--,- =--, 
1i V (me;) ;, V me; 

so that 

e41n 2 e4m Eo ~ s .) 2 

W; (p0) ~ 1j3 Vei [(\Is, (p;)- v) (Po-p;)]~= 1i3 V ( ~ • 

(A.3) 

This expression is almost the same as the result 
obtained by Tevordt12 from an exact analysis of a 
somewhat simplified model. In deriving (A.3) we 
have neglected the difference between the slowly 
varying quantities mk(p0 ) and their values at the 
ionization threshold, and have replaced all the mk 
by some mean value m. Also we took the speed of 
the final particles v as small compared with the 
speed of the primary Y'Ee(Po ). 

When the Born approximation is inapplicable, 
the ionization cross-section for slow electrons 
differs from the Born multiplier 11/J ( 0, 0 ) 12, 

where ljJ (r1, r 2 ) is the wave function of the final 
state describing the motion of the two electrons 
relative to the hole.13 When a long-range Coulomb 
interaction is present, this multiplier tends to in­
finity as (E-q)-1 .14* The evaluation of the ma­
trix element given above is then correct only in 
the region E - q /!:, e4m/ ~2112 (criterion for applic­
ability of the Born approximation). The dielectric 
permitivity ~ enters into this criterion because 

"'The results of Geltman14 cannot be considered as strictly 
proven, since one of the terms entering into the interaction of 
the final particles was considered as a small perturbation. More 

convincing from our point of view is the fact that the experi­
mentally measured ionization cross section in gases close to 
the threshold depends linearly on energy. 

the growth of 11/J ( 0, 0 ) I 2 is determined by the 
long-range part of the Coulomb interaction. In the 
region of small energies 

The energies of interest to us are of the order 
Ei + C¥Ei· Consequently, if ~ is large enough so 
that ~2aqn2/e4m » 1 the Born approximation is 
applicable for them and Formula (A.3) can be used. 
In cases where ~ ~ 1, the situation is completely 
analogous to that which exists in gases and the ion­
ization cross section close to the threshold in­
creases linearly. 

APPENDIX II 

We transform the system (34) by introducing 
new variables according to the formulae 

1( ·r \ l X1 (z) = 1 I- I ~111 ) fo (y) + V~s (y)/ 

Xexp[f~li,(Y+ ; 1 rJ; 
x~ (z) = {(I + V ~1') f o (y) - V~s (y)} 

X . [ 1 0 ( + 1 ) 2
] exp T hll y ~ . (A.5) 

The functions. x1, 2( z) then satisfy the following 
equations: 

which easily lead to the Whittaker equation. The 
corresponding solutions are given by (35) - (37). 
Here we retain in the analysis some limiting 
cases. It was remarked above that in the region 
of fields of interest to us the quantity f31Yt 
= o ( Ei /E )2 is small compared with unity. There­
fore we will retain only terms of the order ..J73; y1, 

and will neglect terms of the order f31Yt. 
a) p « 1. Region of large fields. In this case 

the quantity z0 = 2p (4+{31y~)/(4 -{31yy) is also 
small. In the zero approximation in p 2 the solu­
tion has the following form: 

~ . 1_ v~ ( _]_ ~1 );- _'!_ ,) ,., ( _I _'1__)2 l 
~ exp) - 2- Y 1 2131 . 4 r111 Y r 13 , /' 

(A.7) 



KINETIC THEORY OF IMPACT IONIZATION IN SEMICONDUCTORS 517 

S (y) =-{I- Y~id2} fo (y)IV!fr, a(£)= I I V"ifrir- 112· 

(A.8) 

b) p » 1. Region of relatively small fields. 
For this case it is most convenient to start directly 
from (A.6). We transform afresh to the independ­
ent variable y = ( 4p ) 1/ 3 ( z - 2p ) and neglect the 
small quantity p -4/3 y 2• The functions x1 ,2 ( y) 
then satisfy the equation 

d2z1.2(Y)Idy2 -(y+ V~h1.2(y) = o. (A.9) 

Consequently, 

'1.1.2 (y) = (y + V~>'1'K•t. £% (y + Vifr)'1'], (A.lO) 

f o (y) ~- V!/K•t. (2/a y'lz) exp 1- 1/4 ~1'11 (y + 1;~1)2 ] + 0 (~1), 

s (y) =- IV!/K'/, (%y'1•) I K•t, (% y'1') -11 I 21 fo(Y); 

(A.ll) 

a (E)= - 3'1•r (%) 1 i 1r (113) - 112 • 

If y1 is not small, then 

(A.12) 

a(E) = - 1/ 2 [K,1,(1U 12)1K.1,(i~!l2) -IJ. (A.13) 

This solution is easily obtained also from (34) 
under the condition {31 « 1. 

APPENDIX III 

1. The evaulation of the corrections to the solu­
tion of (30) for j = 2 which are proportional to {32, 

0'2, and at can be performed in the following way. 
We introduce the new independent variable 

11 ={2 "\ ... /k2(x)l1-l-f3.kz(x)y2 jd }''' 
z j Y Jl lc" (x) Y 

0 

and then by substitution 

2 

( dz )-1 { 1 \ r x2o (x) 
fo(Y)= dy exp -2.J'I2J..(x)0 

0 

d r xl.. txl )] A (x) dz d } 
+ dy ( 1 + f3•k2 (x) y2 xk2 (x) lfi z tfl (z) 

arrive at the equation in the normal form 

d2rp (z) I dz2 - { 114 i~'Y (z) + z2 } rp (z) = 6. 

(A.14) 

(A.15) 

We develop 1}1 ( z) in a power series of z: 
l}f(z) = 1}1(0) + l}lt<z) + 1}1"2(z2 ) + .... In essence 
this series is an expansion of 1}1" ( z ) in powers of 
0'2 and {3 2 : 1}1 "' a 1, 1}12 contains terms proportional 
to a~ and {3 2, etc. By the transformation 

Equation (A.15) leads to the previous form. We 
limit ourselves here to this preliminary treatment 
and shall not proceed to explicit expressions for 
1}1" ( z ), 1}10, 1}11 and 1}12 in view of their cumber­
someness. 

2. As the variational function for the problem 
formulated in Eq. (46), we will choose the function 
s(y)=zVKv(z), where z=(~y)3/2 v. Thisfunc­
tion has the correct behavior at zero, s (y) - s ( 0) 
"' y3, and decreases monotonically with increase 
of y, i.e., it satisfies the basic qualitative require­
ments for s (y ). Also in the limiting cases of 
small ( v - £) and large ( v - ! ) values of {32, 

it gives an accurate solution of (39) for y2 = 0. 
Of the two parameters ~ and v, only one is dis­
posable by virtue of the additional condition (46). 
We will take v as the independent variable. The 
parameter ~ is expressed in terms of v and u 
in the following way: 

e = (22v I 31ta) vr2 (v) sin ltV. (A.16) 

The evaluation of all the integrals entering into 
(46) is most conveniently carried out using the 
known integral forms of the Macdonald functions 

00 

Kv (z) = i zv ~ rv-r exp {-+- ~: } dt, 
0 

00 

~ z!LKv (z) Kv• (z) dz 
0 

= 2/L-2 - r (~-' + v + v' + 1) r ,,~- v -t-v' -1- 1) 
r (!-' + 1) 2 \ 2 

X r(l'-_+_"-;-v'-1-i)r(~-'-v-;-v'-1-1): (A.17) 

As a result, (46) is reduced to 

- ~2 ~ g min{- g 2•\lr (v) + •h (v)}, (A.18) 

where the functions 1/Ji ( v) and lj;2 ( v) are deter­
mined by (48). The condition for the minimum of 
this expression leads to the connection (47) be­
tween {3 2 and g. 
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