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The interaction of nucleons at large distances is considered on the basis of a nonlinear 
Lagrangian of general form. By means of the Heisenberg commutation function it is shown 
that there are forces with the Coulomb dependence on the distance and with a fine-structure 
constant equal to 1/138 (scalar theory). The causes of the absence of electromagnetic 
forces in the vector, tensor, and axial-vector theories are analyzed. Deviations from the 
Coulomb law and their effects on renormalization are discussed. 

THE quantization of the wave equation 

r~'-a~;axiJ.-l2 ~(f~> = o 
by means of the commutation function 

(1) 

The Lagrangian (4) retains its form when the 
two operators 1/J in the normal product are inter­
changed, if the coefficients C are subjected to 
the transformation 

S (x) = (21t p (' eiqx ,a [. xyvqv - i J d4q 
j q• (q• + x•) q2 

(2) 

has made it possible to show1 that a theory based 
on these two propositions contains forces with the 
Coulomb dependence on distance and with the fine­
structure constant2•3 

(3) 

This is a great achievement of the theory, since 
for the first time electromagnetic forces have 
been represented as a consequence of other, more 
primary laws. A distinguishing feature of the 
work is that the calculated fine -structure constant 
has a value close to that found experimentally. 

We shall take as the basis of the theory a La-
grangian of general form 

L ,;:- a<f 1 f2 '\l C' . ;;:o ' To ,,,. 
='j'j a+2 LJ n·'j' n<;i·Cf' n'j' .. 

!'- XIJ. n 
(4) 

Here the colons indicate the normal product of the 
operators, and On are the 16 Dirac matrices 

0, = 1, j 14 , 

irsl14 • rs. 
(5) 

which satisfy the relations 

0~ = 0,, Sp OmOn = 4/lmn. (6) 

Thus the objections connected with the arbitrary 
choice of the Lagrangian in the papers of Reisen­
berg and others1- 3 are removed, and the introduc­
tion of the normal product removes from the the­
ory the so-called vacuum divergences4 and the 
indefinite quantity SF(O ). 
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(7) 
m 

where the Amn are defined by the identity 

(8) 

[rn is any one of the matrices (5)]. The coeffi­
cients Amn are shown in Table I. The require-

TABLE I 

rn 

Amn 

I I yfJ.V I iy,yfJ.I 1 Y, y, 

1 1 1 1 1 1 

Y, 4 -2 0 2 -4 

om YfJ.v 6 0 -2 0 6 

iy,Yfl. 4 2 0 -2 -4 

\fi 1 -1 1 -1 1 

ment of invariance with respect to the transforma­
tion (7) is satisfied if the Cn appear only in the 
combinations 

n 

1. PHOTONS AND THEm PROPERTIES 

The wave function of a boson 

Cf'cx{l (x, Y) = (0 I T</J,_ (x) Cfr. (y) I <D). 

obeys the equation 

Cf'cxr. (x, x) = ~ H CXE1)dx, u) cpEl) (u, u) d4u, 

(9) 

(1.1) 

(1.2) 
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which can be derived from the field equation 

(1.3) 
n 

by means of the Tamm-Dancoff method. One thus 
finds that5 

H"q~ (x, u) =-+ il2 ~-} BN { G (x, u) rNs (u, x) 
N 

+S (X U) fNQ (u, x)}rt.~ (fN)7,, 

= + 2.J H MN (x, u) (fM)"dfN)7)•· (1.4) 
M,N 

Here 

H MN (x, u) =-+ i/2 -} BN Sp {fMG (x, u) rNs (u, x) 

+fMS(x, u)fNG(u, x)} 

= (2rtf4 ~ eiP (x-u)H MN (p) d4p; (1.5a) 

(1.'5b) 

In the momentum representation for the function 

cpM(P) = SpfMcp(p) 

= Sp rM ~ e-ipx <O IT~ (x) f(x) I <D) d4x (1.6) 

(1.2) has the form of a linear homogeneous equa­
tion 

cpM (p) = LJ H MN (p) cpN (p). (1. 7) 
N 

The spinor structure of G and S is such that 

(~~2) 1 ~fMG(p + q)fNS(q)d4q = fM('jp)fNB(p2 ) 

+ rMr.l'\vC (p2 ) + rM (rP) rN (rP) D (P2 ). 

Therefore 

HMN(P) =-+BNsp{rM(rp)fN(rp)D(p2 ) 

+ fM"()'N'IvC (p2) 

+ + [rM (IP) rN- r.v (IP) rMJ B (p2 )}. 

(1.8) 

(1.9) 

Equation (1. 7) with the coefficients H MN given 
by Eq. (1.9) can be used to determine the mass 
spectrum of the bosons with nonvanishing rest 
mass. 5 The condition for the existence of such 
particles is that the determinant of the system 
(1. 7) be equal to zero. 

Equation (1. 7) is also valid for photons, for 
which p2 = 0. Here, however, the functions B 
and C are singular: 

B i ( xl ')2 I I • , ::::: - ---- - n P" 1 
2 '41t ' , 

1 ( x/ \2 0 C = -4- -,- 1 In I p- I (1.10) 
'"' J ' 

(the singularity of D is of no significance ) . Be­
cause of this a regular solution of Eq. (1. 7) exists 
only in cases in which the coefficients of the sin­
gular functions go to zero: 

(l.lla) 

(l.llb) 
N 

~ BN Sp rN (IP) r·11 t',v = o. (l.llc) 
11: 

These three cases extend and improve Eq. (19) of 
Heisenberg's paper.1 According to Eqs. (8) and 
(6) the first of these equations is equivalent to the 
equation 

BMAvMt'M=O, (1.12) 

from which it follows that there are two types of 
solutions: 

1) AvM = 0, BM >" 0 is the general solution, 
which exists for all the types of nonlinear term. 
This solution has the form 

and it follows from Eq. (l.llb) that 

(p·e) = 0. 

(1.13) 

(1.14) 

Thus we get an antisymmetric tensor of the second 
rank with two independent transverse polarizations. 
The conclusion about transversality loses its valid­
ity if 

Br = Cs-6Cr + Cp = 0, (1.15) 

which occurs, for example, for the nonlinear terms 
(lfy5yJ.l.lj! )2 and (lfi/J )2 - (lfy51jJ )2 studied in reference 
6. 

2) BM = 0, AvM >" 0; these are particular so­
lutions, whose existence depends on the choice of 
the type of nonlinear term. By choice of the coef­
ficients Cn one can construct any additional solu­
tion. In the cases of the pure types ( Cn = ± c5nn0 ) 

they can all be enumerated: 

S, P: none 
v, A: 'l~v; 

T: 'IlL' r, r~· (1.16) 

The polarization of the tensor solution in a mixture 
of the types V, A can also be longitudinal, since 
the equations (l.llb), (l.llc) are satisfied identi­
cally. 

It is important to emphasize that all the addi­
tional solutions with their nonphysical properties 
are automatically removed from the theory. In 
fact, if we average the nonlinear term of the La-
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grangian (4) over a single-nucleon state, we get 
an effective interaction Lagrangian of the form 

/ 2 ?} Cn (+AnN- anv ):fr N~:rpN 
n 

(1.17) 

which describes the coupling of the boson with a 
spinor particle having the charge !Z2BN. If the 
Lagrangian admits an additional solution of the 
N-th kind, then BN = 0, and the corresponding 
term in Eq. (1.17) drops out. Thus nonphysical 
photons cannot convey an interaction. Further­
more, in a mixture of the types V, A even the 
physical photons give no coupling, since in this 
case the main and additional solutions coincide. 

It will be shown below that the vertex operator 
contains the factor 

Bv = Cs-6Cv + 2CA -Cp, (1.18)' 

which vanishes in the tensor type of theory, be­
cause of the presence of an additional solution. 
Therefore we can draw the general conclusion: 
the presence of additional solutions in any type 
of Lagrangian leads to the absence of electro­
magnetic interaction. 

As is well known, Lagrangians that are mix­
tures of the vector and axial-vector types form 
a class invariant with respect to the transforma­
tion7 

(1.19) 

The absence of electromagnetic forces in this 
class of Lagrangians speaks against the inclusion 
of the Touschek transformation in the invariance 
group of the Lagrangian. 

2. THE INTERACTION IN A LOWER APPROXI­
MATION 

It has been shown above that for particles with 
zero rest mass the theory gives just the kinematic 
properties that are observed for actual photons. 
The proof of their full identity is completed by 
the calculation of the propagation function 

DMN(x, Y) = <O!TcpM(x)rpN(Y)iO> 

= <O 1 n .. (x) r;r .. 41l (x) ~y (y) r~y rfs (y) o> 

=- f~S:s(x, y)f~yS~Il(Y, x) 

=- Sp rM SF (x, y) rN SF (y, x) 

= (2rrp ~ DMN(P) exp [ip (x- y)] d4 p, 

DMN (p) =- (2rct4 Sp ~ d4qfM s (p + q) rN s (q) 

(2.1) 

(2.2) 

(the index F on the Fourier transforms SF is 

omitted throughout in what follows ) . 
The spinor structure of S ( q) is such that 

~ d4 qrM s (P + q) rN s (q) 

= rM (rp) rN (rp) K (p2) + rM rv rN lv L (p2) 

+ rM rN M (p2) + rrM (rp) rN- rM rN (rP)l N (p2). (2.3) 

Therefore 

DMN (p) =- 4 (2rct40MN [ENP2K (p2) + AvN L (p2) + M (p2)] 

(2.4) 

where EN and rN' are defined by the equations 

(iP) fN (!P) =EN p2 f N• 

rN' = r4rN. 

(2.5) 
(2.6) 

The invariant functions K, L, M, N, calcu­
lated by means of Eq. (2) in the limit of small 
p2/K2 (i.e., at distances much larger than the 
Compton wavelength of the nucleon), take the 
values 

M (p2) 
f (p2) -+ 0, (2. 7) 

f ( 2) - i7t2x4 
p --fj2· (2.8) 

Thus in the infrared region of momenta 

(2.9) 

and we return to the Feynman propagation function. 
Since along with this the Lorentz condition holds 
as. a consequence of Eq. (1.14), all the laws of 
linear electrodynamics are satisfied at large dis­
tances. Sizable deviations from linearity occur 
for p2 "' K2, at distances related to the structure 
of the core of the nucleon. Even before this, how­
ever, at p2 "' M~, the structure of the meson 
cloud around the nucleon begins to show up (cf. 
Sec. 4). 

By means of the propagation function that has 
been found one can calculate the matrix element 
for scattering of two nucleons 

m =- u(p', q') w (p', q'; p, q) u (p, q). c2.1o) 

Since in this case we can use (in lowest appro xi­
mation) the effective interaction (1.1 7), we have 

w (p'q', pq) = ~ + l 2BM t l 2 BN DMN (p'- p) 
M,N 

X fMfN o (p'- p + q'- q), (2.11) 

ffi) - • 2 (xl) 4 1 '\."1 B2 E - ( /) rN ( ) 
JJl - - l1t 4 (21t)4 (p' _ p)2 L..J N N U p U p 

N 

XU (q') fN U (q) o (p'- p -j q'- q). (2.12) 
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This formula is the same as the result of Heisen­
berg, Kortel, and Mitter,2 which they obtained in a 
more complicated way. Comparing Eq. (2.12) with 
the matrix element of quantum electrodynamics, 

- -
. 2 uTI-LU·UTI-LU, , 

W'lect=te (p'-p)2. o(p-p+q-q), (2.13) 

we conclude that there ar~ tensor forces with the 
Coulomb dependence on the distance and with the 
fine-structure constant 

rx = e2 I 4rr = 1t (xl I 4n:)4 B}. 

In the scalar theory this quantity is equal to 1/2.7, 
i.e., 50 times the observed value. In the vector 
and axial vector theories there is no interaction. 

Both the numerical discrepancy and the incor­
rect spin dependence are due to the absence of the 
vertex operator. The difference between this op­
erator and unity must also be taken into account 
in the lowest approximation. 

3. THE VERTEX OPERATOR 

The vertex operator describing the emission 
(absorption) of a photon of type M can be written 
in the form 

v M = (<I>' I1?M (x) I <D> = (<D' I o/« (x) r~" cfr, (x) I <I>), (3 .1) 

where <P, <P' are the states of the nucleon before 
and after the scattering. 

Owing to the completeness of the set of eigen­
functions, 

(Oio/1-L(Y)o/a(x)~~(x))<D) 

= ~ <O I o/1-L (y) I <D'> (<D' I o/" (x) ~(l (x) I <D>, 

we have the equation 

ut-Le-iE't (<D' 1 o/a (x) (Ji"!l (x) 1 <D) 

= ~ dye-1P'Y (0 /4~-' (y) o/a (x) (Ji"ll (x) I <D) 

(3.2) 

(3.3) 

( uf..L is the spinor for the physical nucleon). The 
right member of Eq. (3.3) is easily calculated in 
the first approximation of the Tamm-Dancoff 
method: 

i12 , 1 BN (' N 
= 3 LJ 4 J GI-LP (y, z) r po Sa(l (z, x) 

N 

X f~ Uv eiqy+i(p-q)x d4 qd4 r + ... , (3.4) 

The terms indicated by the row of dots arE. 
omitted because they make no contribution to the 
infrared asymptotic behavior of the vertex oper­
ator. By using Eqs. (3.3) and (3.4) we get (for 
tx = ty) 

il2 '\1 BN \' V M = 3 (2rrt5 LJ - 4- ei(p-p')x .I dq00 (p + q) fN 
N 

(3.5) 

Using Eq. (2.3) and averaging over the spins of the 
nucleons, we get ( q2 / K2 ---. 0 ) 

\ M ir<2 X3 ' M M' JS(q+r)r S(r)d4r= -(i'J(qr -r r). (3.6) 

For the tensor photon, with rM = Yf..LV• we have 

qr~-'. -riL.q =- 2i (riL q. -rvqrJ• 

N " " N " " r (qr~-'. -riL. q) r = ANv (qriL.- 'IILVq), 
(3. 7) 

~BNANv = ~4Bv. 
N 

The result is then 

V r =- (~;)• (2rrt5 Bvei(p-p')x rr 2 x 

X\ d p + q • qT t-LV- T ILV q • 
J qo (p + q)• q• 

(3.8) 

Calculating the momentum integral for p2 - 0,3 

we find 

V C (p'- p)IL • ( ') j 
r = IP'-Pir.exp[t p-p x, (3.9) 

1 'xl ) 2 
C = 12 (t;;t Bv. (3.10) 

The introduction of the vertex operator in the 
matrix element brings the latter to the form 

(rN = y4v ), i.e., we get vector forces with the 
fine-structure constant 

IX = It (xl I 4rr)4 B} · 16C2 = (rr / 9)(xl I 4rr)8 B}B}, (3.12) 

which in the scalar theory is equal to 1/202. The 
remaining numerical disagreement with experi­
mentis due to the omission of higher-order cor­
rections to DMN (cf. Sec. 4). 

It must be particularly emphasized that as the 
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result of the emission of tensor photons vector 
forces are produced. This is explained by the 
invariance of the vertex operator under charge 
conjugation and reflections of the space coordi­
nates (cf. reference 3). 

4. CORRECTIONS TO THE PHOTON PROPAGA­
TION FUNCTION IN THE CHAIN APPROXI­
MATION 

The expression for the photon propagation 
function 

Da.llv.v(X, y) = ~ [ll .. ,llllflll(x, u) + La<llfJ(X, u)] 

(4.1) 

(D0 is the propagation function calculated in Sec. 2) 
contains the operator L, which describes the ef­
fect of the higher approximations at one of the junc­
tions of the diagram (Fig. 1, a) that represents the 
propagation function D0 in lowest approximation. 

,_---; ..... 
I( ) 

..... " ..... __ ,., 
a 

-- ---~--­~, 'v" ,,. -

',-~~'--~ '--~ 
b 

If we confine ourselves to the "chain" appro xi­
mation, the function DMN can be represented by 
the diagram of Fig. 1, b; to this diagram there 
corresponds the following integral equation for L: 

L«•llll (x, u) = H«<llfl (x, u) 

(4.2) 

The operator H (x, u) that appears here corre­
sponds to one link of the chain; it has already been 
encountered in Eq. (1.2). 

The two equations (4.1) and (4.2) are decidedly 
simplified by the substitution 

L"•llll (x, u) =- o .. ,ol)~ o (x, u) + Q"•"llll (x, u) (4.3) 

and passage to the momentum representation, 

Q ... llfl (x, u) = (2rrf4 ~ QC<<llll (p)elp(x-u) d4p. (4.4) 

They are thus reduced to linear algebraic equa­
tions: 

Daflv.• (p) = QIX<llll (p) D~llT>< {p) Q~,m {p), (4.5) 

QC<<llll (p) = llc.. ollfl + Hapall (p) QpEl)O (p). (4.6) 

Expressing Q (p) in terms of the Dirac 
matrices 

Qa•TJfl {p) = T ~ QMN(P) (fM )a.ll (fNhe (4. 7) 
M.N 

and using Eqs. (1.4) and (6), we bring Eq. (4.6) to 
the form 

QMN(P)=~MN+L,HMK(p)QKN(p), (4.8) 
K 

which is entirely analogous to Eq. (1. 7). The only 
difference is the presence of the inhomogeneous 
term OMN· In view of this relation between the 
equations (1. 7) and (4.8) it can be asserted that 
the eigenvalues of the equation for <PN(P) are 
the poles of Q (p ); that is, that the boson masses 
are the poles of Q (p). 

Equation (4.8) can be solved easily, since 
HMK ;e 0 for M = K or M = K' [ cf. Eqs. (1.9) 
and (2.6)]. In our case of p2/K2 - 0 the solution 
is particularly simple, since 

HMK(P)~- i-(xl/4~t)21lMKBMEM· (4.10) 

The result is 

Using the expansions 

Da•l'-• = ~ DAB (fA )afl (f8 )v.vo 
A,B 

(4.12) . 

D~l)TK = ~ D'AB(fA).l)(f8 h>< (4.13) 
A,B 

and Eq. (4. 7), we get 

DAB (p) = 2: QAM (p) D'JHN (p) QBN (p). (4.14) 
M,N 

Owing to Eq. (4.11) we have in the infrared region 

DAB (p) = QAQB D!j.B (p) = Q~ Dlj. (p) OAB· (4.15) 

Thus inclusion of the higher-order corrections 
by the summation of "chain" diagrams leads to the 
appearance of a correction factor 

(4.16) 

in the expression for the propagation function. 
This factor depends on the sign of the nonlinear 
term; it contains BA to the first power, whereas 
B A occurs squared in all the other expressions. 
Because of this there is a possibility of determin­
ing the sign of the nonlinear term. The value of 
the correction in the scalar theory is 0.17; that 
is, it is far from the nearest zero of the denomi­
nator. It increases very rapidly, however, with 
approach to the threshold for production of a vee­
tor meson. Below the threshold the main part is 
played by the virtual production of mesons, which 
smears out the structure of the nucleon and leads 
to other nonlocal effects. 
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In view of the fact that the threshold for the 
production of mesons by electrons is considerably 
higher than that for nucleons, deviations from the 
Coulomb law are easier to detect in the scatter­
ing of nucleons. Thus nonlinear (and nonlocal) 
effects appear at lower energies in mesodynamics 
than in electrodynamics. This in turn is closely 
connected with the large difference between the 
coupling constants, which receives a natural ex­
planation in a unified nonlinear theory.1 An inter­
mediate position between these two cases is occu­
pied by the scattering of electrons by nucleons. 

The appearance of a correction factor in the 
propagation function can be understood in the 
sense of a charge renormalization, although here 
all quantities are finite. The presence of addi­
tional p&les in the renormalized propagation func­
tion is due to an actual physical effect: the influ­
ence of the meson field on the electromagnetic 
field. This dispenses with the difficulty that sev­
eral writers8 have pointed out in the interpretation 
of the additional poles. The difficulty with the 
vanishing of the renormalized charge is also re­
moved. It could occur only at energies sufficient 
for penetration into the nucleon core, where there 
is of course no point in talking about the Coulomb 
law. In this region mesic forces play the decisive 
role. The continuous transition between electro­
magnetic and mesic forces underlines the neces­
sity of a unified theory of both types of interaction. 

5. THE FINE-STRUCTURE CONSTANT 

Inserting the renormalizing factor (4.16) in 
Eq. (3.12), we get the following expression for the 
fine-structure constant of the electromagnetic in­
teraction: 

"'(x/ )882 82 [1 1 (x/ \2B 1-2 
OL = g 4rc T \. - :f , 4n ) T (5.1) 

( ET == -1, since rN == 'Y4V; cf. Sec. 3 ). 
Using the values of the constants calculated in 

reference 5, we get for the pure types of nonlinear 
term the results shown in Table II (the small nu­
merical disagreement with the result of Ascoli and 
Heisenberg3 is due to an improvement in the value 
of the constant Kl ). Comparison with the experi-

Type of 
theory 

s 
p 

V, A, T 

TABLE II 

Sign of nonlinear ter:n 

+ 

1j1:38.1 
1/10.8 
0 

1/277.4 
1j:)7.2 
0 

mental value 1/137.03 is strong evidence for the 
Lagrangian 

Precisely this Lagrangian was proposed in refer­
ence 2, but a mistake that got into the calculations 
led to a change of the sign of the nonlinear term. 3 

In the pseudoscalar theory the forces are larger 
by an order of magnitude. The absence of forces 
in the vector, axial-vector, and tensor theories has 
been analyzed above (Sec. 1); it is due to the pres­
ence of longitudinal photons in these theories. 

The accuracy of the expression (5.1) can be 
improved by the calculation of higher approxima­
tions to the vertex operator and by an estimate of 
the degree of correctness of the chain approxima­
tion for the photon propagation function. 

6. CONCLUSION 

As the result of the present treatment we con­
clude that it is possible to reduce the law~ of 
electromagnetic forces to other, more primitive, 
laws. In the limiting case of small momenta the 
electrodynamics constructed on the basis of Heis­
enberg's theory goes over into the ordinary quan­
tum electrodynamics with the fine-structure constant 
1/138, and with the correct polarization properties 
of the photon. The last two facts are closely inter­
connected; the admission of a longitudinal polari­
zation makes the charge vanish. 

Moreover, with increase of the energies of 
the interacting particles departures from the 
Coulomb law appear because of the virtual pro­
duction of mesons and nucleon-antinucleon pairs. 
Beginning at a certain value of the energy a sep­
arate treatment of the electromagnetic and mesic 
forces becomes impossible, and the concept of 
electric charge loses its meaning; the internal 
structure of the particles begins to manifest it­
self. Such difficulties of the linear theory as the 
vanishing of the renormalized charge, and so on, 
occur only beyond this threshold value of the en­
ergy and are of no physical interest. With further 
increase of the energy electrodynamics goes over 
continuously into the mesodynamics of vector 
mesons. 

The existence of an upper limit to the applica­
bility of the separate theory also shows the neces­
sity of a unified theory of the elementary particles. 
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