Values of the deformation parameters for 11 even-even nuclei were also cited in the paper by Gol'din and Ter-Martirosyan⁵ (Table IX) where they were obtained as a result of the numerical solution of an initial exact equation describing α decay. A comparison of our results with the values of α obtained by these authors⁵ shows that they practically coincide with each other — the deviation does not exceed 10%.

¹V. M. Strutinskiĭ, J. Exptl. Theoret. Phys. (U.S.S.R.) **32**, 1412 (1957), Soviet Phys. JETP **5**, 1150 (1957).

²Gol'din, Novikova, and Peker, Usp. Fiz. Nauk 59, 459 (1956).

³ Strominger, Hollander, and Seaborg, Revs. Modern Phys. **30**, 2, part II (1958).

⁴I. Perlman and J. O. Rasmussen, Alpha Radioactivity, <u>Handbuch der Phys.</u>, **17** (1957).

⁵ L. L. Gol'din, K. A. Ter-Martirosyan et al., J. Exptl. Theoret. Phys. (U.S.S.R.) **35**, 184 (1958), Soviet Phys. JETP **8**, 127 (1959).

Translated by Z. Barnea 404

RESONANCE TRANSITIONS IN PARALLEL FIELDS IN CERTAIN Mn⁺⁺ AND Fe⁺⁺⁺ SALTS

N. S. GARIF' YANOV

Physico-Technical Institute, Kazan' Branch, Academy of Sciences, U.S.S.R.

Submitted to JETP editor April 9, 1959

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 1957-1958 (June, 1959)

 $K_{\rm URUSHIN^1}$ and Kutuzov² have communicated that at $\nu \sim 10^{10}$ Cps at room temperature the $\chi''(H)$ absorption curves in certain Mn⁺⁺ and Fe⁺⁺⁺ salts possess a maximum when investigated in parallel fields (an oscillating magnetic field H_{ν} directed parallel to a constant magnetic field H). This absorption in parallel fields was explained by a spin-spin relaxation and identified with the phenomenon discovered experimentally by Gorter et al.³ In addition it was also noted in references 1 and 2 that the experimental $\chi''(H)$ curves do not fit Shaposhnikov's theory.⁴

As is known, for certain Mn^{++} and Fe^{+++} salts⁵ in perpendicular fields, at $\nu \sim 10^{10}$ cps and room temperature, a peak due to the forbidden transition from $\Delta m = \pm 2$ is observed in addition to the main resonance peak corresponding to the allowed transition from $\Delta m = \pm 1$. The intensity of this peak is approximately a hundred times smaller than the intensity of the main peak.

Our measurements of $\chi''(H)$ at 9500 Mcs and T = 295°K in FeNH₄(SO₄)₂°12H₂O have shown that in the course of a smooth change from perpendicular to parallel fields (the angle between H_{ν} and H changes from 90° to 0°) the intensity of the peak for the transition from $\Delta m = \pm 2$ increases by approximately one order of magnitude, while the intensity for $\Delta m = \pm 1$ decreases practically to zero. At the same time, the resonance value of the intensity of the constant magnetic field H = 1680 oersteds remains unchanged for the transition from $\Delta m = \pm 2$.

On the basis of this experiment, we can draw the conclusion that the maximum absorption $\chi''(H)$ in parallel fields observed by Kurushin and Kutuzov is not caused by spin-spin relaxation, but by resonance. There are grounds to believe that the phenomena discovered by Gorter in parallel fields at lower frequencies of H_{ν} are also, in a number of instances, due to resonance transitions.

¹A. I. Kurushin, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 938 (1957), Soviet Phys. JETP 5, 766 (1957).

²A. N. Kutuzov, J. Exptl. Theoret. Phys. (U.S.S.R.)

35, 1304 (1958), Soviet Phys. JETP **8**, 910 (1959). ³ Smits, Derkson, Verstelle, and Gorter,

Physica 22, 773 (1956).

⁴I. G. Shaposhnikov, J. Exptl. Theoret. Phys. (U.S.S.R.) **18**, 533 (1948).

⁵ E. K. Zavoĭskiĭ, Dokl. Akad. Nauk SSSR **47**, 887 (1947).

Translated by Z. Barnea 405