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The radiation reaction force is computed for a charge that moves in a medium which, for 
generality, is taken to be anisotropic and gyrotropic. The radiation force in the medium 
can be important in cases in which the particle moves in a magneto-active plasma, in chan
nels and slits in dielectrics, or in waveguides. At velocities greater than the phase velocity 
of light in the medium, the radiation force that affects the oscillation because of the anoma
lous Doppler effect has a different sign than that due to dissipation associated with the normal 
Doppler effect. The total radiation force which affects the amplitude of the oscillations of the 
particle in an isotropic medium corresponds to dissipation for motion at velocities greater 
than the velocity of light. However this dissipation force may be appreciably smaller than 
the dissipation associated with motion at velocities smaller than the velocity of light. In an 
isotropic medium the oscillations can be strengthened instead of attenuated. The reduction 
in the radiative dissipation force may be related to the peculiarities of the anomalous Dop
pler effect as found in the quantum -mechanical analysis and the instability of particle beams 
which move at velocities greater than the velocity of light. 

SINCE the presence of a medium has a pronounced 
effect on the nature of the electromagnetic waves 
produced by a moving particle it is clear that the 
radiation reaction forces in the medium are af
fected by the medium. As an example we may note 
that an oscillator of frequency w in an isotropic 
plasma with a refractive index n2 = 1 - 47re2N/mw2 

will not radiate when 47re2N/m > w2 if n2 < 0; in 
a magneto-active plasma in the nonrelativistic ap
proximation no radiation is produced by an electron 
which rotates in a magnetic: field Ho at a frequency 
WH = eH0 /me (cf. referenee 1). In both of these 
cases the radiation force is obviously zero; in vac
uum this force is f 0 = (2e2/3c3 )v. On the other hand, 
in uniform motion in a medium, if v > c/n ( w), 
Cerenkov radiation occurs; in the isotropic case 
the radiation force associated with this radiation 
is2 

(1) 

In light of the above alone, it is of interest to 
compute the radiation reaction forces for arbitrary 
motion of a charge in an arbitrary medium. To the 
best of our knowledge, this problem has not yet 
been investigated. 

The apparent reason for this is that the radia
tion force for motion in a ::nedium is usually much 
smaller than the braking forces associated with 

ionization losses. Thus, the Cerenkov radiation 
losses, which may be considered radiation losses, 
amount to only a small fraction of the total losses 
even in a transparent but dense medium. In the 
case of nonuniform motion of a charge the situation 
is generally the same. 

There are, however, cases of practical interest 
in which it is important to take account of the ra
diation forces for motion in a medium. This sit
uation arises in the motion of particles in chan
nels or slits in a medium, motion in a vacuum 
close to a medium, and motion in waveguides. If 
the channel is narrow the radiation produced is 
essentially the same as the radiation in a con tin
uous medium.3•4 Thus, motion in channels or slits 
in a medium can in most cases be treated in the 
same way as motion through a medium (the chan
nel is essentially a mechanism for avoiding the 
ionization losses ) . The radiation forces can also 
be important for motion of a charge in a rarefied 
plasma (in particular, in a magneto-active plas
ma). 

The problem of radiation forces in a medium 
acquires a special interest at velocities greater 
than the velocity of light. For these cases the 
radiation force which affects the amplitude of the 
particle oscillations can be very small and even 
zero [this is due to the nature of the anomalous 
Doppler effect (cf. references 5 and 6 )1. We 
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shall pay special attention to this point since it 
is intimately related to the problem of the stabil
ity of beams which travel faster than the velocity 
of light. 

Before dealing with these problems, we com
pute the radiation reaction force in a medium for 
the general case. 

1. To compute the radiation reaction force we 
first assume that the charge is not a point charge 
but is characterized by a density distribution p = 
eg ( r - R), where R ( t) is the radius vector to the 
center of gravity of the charge and J g ( r - R) dr 

= 1. Under these conditions the field equations and 
the equations of motion assume the form 

4~ 1 ao 
curl H = cevg (r- R) + c Tt, div D = 4rreg (r- R), 

curl E = - ___!_ ~ div H = 0; 
c at ' (2) 

+ e~{E (r) + + vxH (r) }g(r- R) dr, (3) 

where the charge is assumed to move as a whole 
with velocity v = R; H<0> and E<0> are the exter
nal fields, E and H are the fields produced by 
the charge itself and for simplicity the medium is 
assumed to have a magnetic permeability of unity 
(JJ. = 1 ). 

Having in mind applications to a magneto-active 
plasma we shall assume that the medium is aniso
tropic and gyrotropic, writing 

~(w) ~ 

Da = s~dw)£~ (w), IX, ~ = 1, 2, 3, (4) 

where the double subscripts indicate summation 
and the symbol w indicates that the Fourier com
ponents are taken and the real fields are D = D + D* 
and so on. The tensor E a{3 ( w ) is assumed to be 
Hermitian (Eaf3 = E~a), i.e., absorption is neg
lected; in principle it is possible to remove this 
restriction. 

For an arbitrary medium the only effective 
method for solving the problem is expansion of 
the fields into normal plane waves.7- 9 Thus, we 
write 

A= A+ A*' A= Vtm"c LJ q,.j(t) a).j ikv, 
!., i=I,2 n,i 

1 aA 
E =cat- V<'fl, H = curl A, (5) 

where nA_j is the refractive index and aA.j = aA.jt + 
iaA.j2 ( j = 1, 2 ) is the complex polarization vector 
which corresponds to the normal (extraordinary 
or ordinary) wave; the summation over kA. in (5) 
is taken over the upper hemisphere in k -space. 

In order to simplify the relations it is conven
ient to impose the following condition on A 

s~~a!L I ax~+ c.c. = 0. 

The equations for A and cp which follow from 
(2) and (6) are as follows: 

4.-c 
= ----cevg(r- R), 

(7) 

where ea is a unit vector along the a axis. 
In the normalization of the potentials which has 

been chosen the part of the field E which is equal 
to - Y' cp makes no contribution to the radiation 
reaction and will not be considered below. 

Substituting Eq. (5) in the expansion in (7), after 
multiplication by -./ 47rc (a~j /nA.j) e-ikA,r and inte
gration over the volume we have 

(8) 

where w~j = k~c2/n~j (this calculation is consid

ered in greater detail in references 7 and 8). It 
should be noted that in using the quantity nA.j in 
Eq. (5) and below, because this quantity is a func
tion of w we are not being consistent since the 
time dependence of qA.j (t) is still not known. 
Actually, however, in the calculation of the radi
ated energy for the radiation reaction force the 
quantity QA.j refers to the radiation field and the 
entire calculation can be carried out assuming at 
the outset that nA.j is constant and by taking ac
count of the dependence of nA.j on w in the final 
result before integration over frequency (cf. ref
erence 7). 

It follows from Eq. (8) that 

t 

q~.i (t) = q!.i (0) + -1 \ f (t') sin w"i (t- t') dt', 
(jJ).j ~ 

t 

X~ ~ g (r'- R') (R'a;.i) e-ik1.r' sin w"i (t-t') dt' dr' +A (0), 
~0 ~ 

where R' = R ( t' ) and R' = R ( t' ) = v' ( t' ) . We 
neglect the free solution A ( 0) below. Comput
ing E and H from Eq. {9) and substituting in 
Eq. (3) we have 
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!!:_ mv = f(o) - ~ "1.-, \ a (r- R) g (r' - R') eik(r-r') 
dt V1-v2jc2 2rc2 _.LJ )" 

1=1,2 

v'a~ 
X n2~. sin[wf(t-t')l}dt'dkdr'dr+c.c., 

I I 

where 

f(o) = e {E<o) + c~1 v x H<ol}, 

and as usual we carry out the integration over 

(10) 

k (density of states dkA. l8rr3 ). The second term 
in the curly brackets in Eq. (10) is to be associ
ated with the magnetic radiation reaction force; 
in vacuum in the nonrelativistic approximation 
this term is vIc times smaller than the first 
and is neglected. In the presence of a medium 
the magnetic field H ~ nE [for a plane wave 
~ eiwt-ikr we have k x E '= wHic, k2 = (wnlc)2 ] 

and the magnetic reaction force differs from the 
electric reaction force by a factor of approxi
mately vnlc. For motion at velocities greater 
than that of light, in which we shall be especially 
interested, vnlc > 1; thus, the magnetic force 
cannot be neglected even if vic« 1. Obviously 
the magnetic force does no work. 

Below we shall compute only that part of the re
action force which does not depend on the dim en
sions of the particle. Hence, till we drop the term 
containing the electromagnetic mass it is conven
ient to take the form factor g ( r - R ) as a o -
function, o ( r - R), cutting off the integration 
over k at kmax = Wmaxle ~ 2rrlr0, where r 0 is 
the radius of the particle. We write Eq. (10) in the 
form 

, t kmax a. (v'a~) 
!!:_ (. · mv ) = f\O) - ,:!!..... \.l \ ( {~ cos w · (f ·-~ t') 
dt V 1-v2jc2• Ln2 _.LJ } j i I 

]=l,~ 0 0 

va. } 
-· i v x (k x a·) -.,-1- sin (•Jf (t - t') e1k(R-R') dt' dk 

I nfwi 

i- C.C, = f(O) -j- f,.. (11) 

The method of computing the radiation reaction 
forces which is being used here is convenient either 
in an isotropic medium or in vacuum (cf. refer
ences 10 and 11). To verify this statement and to 
check the results we consider the non-relativistic 
motion of a particle in a vaeuum. In this case, as 
the aj we take the real unit vectors which are 
perpendicular to k and to each other; one of these, 
which lies in the plane defined by the vectors k 
and v', will be denoted simply by a. The second 
term in the integral in Eq. (11) is neglected since 

it is of order vIc. Introducing polar coordinates 
in k- space (k2 = w21c2 ) we have: 

t Wmax 

dv e2 \ \' ( m ([[= f\O)_ ,.2c3 } ~ ~a (v (t') a) cos w (t- t') 
0 0 [! 

X cos (kR (t) -R (t')) (o2dl•JdQdt'. (12) 

Writing 

cos w (t- t') =- -i;-. ~·[sin w (t- t')] 

and integrating by parts over t' we transform the 
integral in Eq. (12) to the form 

~ d~' {a (v'a)cos k (R- R')} sin uJ (t- t) wdwdildt', 

where we have dropped the term that depends on 
the initial conditions and exists only when t ~ 
11 Wmax (this is considered in greater detail in, 
references 10 and 11 ). Carrying out another in
tegration by parts and integrating with respect to 
dQ = sin e de dcp, we have 

t Wmax 
d 4e2 w dv 2e2 ~ ~ d2a (va') cos k (R- R') 

m ~ = f(O)_ -3 max -dt + 3 . dt'2 
dt n c" . nc· 

0 0 

X cos C•J (t- t') dt'dw sin 6dfJ. (12a) 

The second term on the right side of Eq. (12a) is pro
portional to the electromagnetic mass 4e2Wmax/3rrc3 

~ e2/r0c2 and must be discarded since by m 
we understand the experimental value of the mass 
(this procedure, which has been used for many 
years, is identical with mass renormalization, 
which is sometimes assumed to be of recent ori
gin). The third term on the right side of Eq. (12a), 
if one neglects quantities which approach zero as 
Wmax- oo (i.e., r 0 - 0), is the well-known ex
pression ( 2e213c3 ) ':R, since in the nonrelativistic 
case cos k ( R- R') varies much slower with t' 
than cos w ( t - t' ) while 

t 00max 

lim ~ ~ cp (t') cos w (t- t') dt' dw = ~ rrcp (t). 
oomax~ooo o 

As a second example we consider uniform mo
tion (R = vt) in an isotropic medium with veloc
ity v > cln. The polarization vector a may be 
conveniently chosen as in the preceding case and 
the magnetic force vanishes identically as follows 
immediately from symmetry considerations. As 
a result we obtain the reaction force 

t Wmax 1tj'!. 

fr = fcer = - !:: ~ ~ ~ a (va) COS w (t- I') 
0 0 0 
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Integration over t' leads to the appearance of 
two terms, one of which contains the factor 

sinwr1--(nv!c)cos8JI '(] nv e) fort---+oo. 
1- (nv 1 c) cos 0 ---+ ~0 \ - c cos 

Since cos 8 = c/nv, we have Eq. (1), since the 
term which does not contain the o -function does 
not make any real contribution in the expression 
for the force. 

In the general case of accelerated motion in an 
arbitrary medium the reaction force fr is deter
mined by Eq. (11). Since fr is small, in the cal
culation the quantities R and v = R can be the 
functions which correspond to the motion of the 
particle with the radiation reaction neglected. 

2. We consider motion of an oscillator at ve
locities greater than that of light in an isotropic 
medium, a case which is of interest in connection 
with microwave radiation. 12 

Choosing the velocity of the reciprocatory mo
tion v0 along the z axis, we start with an oscil
lator which oscillates parallel to v0• In this case 
the vector quantities in the problem are as follows: 

R = {0, 0, v0t +Rosin Qt}, v = {0, 0, v0 -T-Va cos ilt}, 

Va = RoQ, al = {1, 0, 0}, a2 = {0, cose, -sin8}, 

k = {0, ksin6, kcos8}. (13) 

Then, from Eq. (11), for the force frz we have 

t kmax 

{rz = - 2: 2
2 ~ ~ si~: 8 (v0 + Va COS Qf') COS Ctl (t- t') 

0 0 

X exp {ik cos 8 [v0 (t- t') 

:- Ro (sin Qt- sin .!:U')]i dt'dk, (14) 

where we have neglected the complex conjugate ex
pression which is implied wherever complex quan
tities are used. At the outset we shall not assume 
that the oscillation amplitude is small; in Eq. (14) 
we use the well-known expansion 

+oo 
exp (ik cos 8R0 sin Dt) =~ ~ Js (kR 0 cos 8) cisru. 

S=-00 

As a result we obtain 

f rz 

00 t kmax 

:!e:." ~ ~ ~ si~:e cosw(t--I')J,G,. 
s, .s'=c_. ---.v () o 

X exp {i [kv0 cos 8 · (t- I') ,- !2 (st- s't')]} dkdt', 

G,· (x) o= J,. (x) (vo i- Vas',x). 

Integrating over t' and keeping only the term 
which corresponds to the o ( y) -function 
[lim (sin ay I rry) for 01 - oo] we have 

(15) 

(16) 

X ein(s-s')lo (y) dk, 

frx=fry=O, y=w-s'D-kv0 cos8, k=wn;c. (17) 

The work of the radiation reaction force on the 
particle is 

T T T 

A=~ vfrz dt = Vo ~frz dt + Va ~ cosDtfrz dt = Ao + Aa. (18) 
0 0 0 

where T = 21rl/rl, l = 1, 2, 3, 4, ... , i.e., T is 
equal to a whole number of periods. 

For high values of T, only those terms for 
which s- s' = 0 and s- s' = ± 1 make a contri
bution to the integrals in Eq. (18). Thus, since 

J,._1 (x) -T- Js'+r (x) = (2s' / x) J,. (x), 

we have 
co 

A=- e;~ ~ ~ sin2 8G~ (kR 0 cos 8) n (w) sin 8w2o (y) d8dw. 
s~-co (19) 

The term with s = 0 yields the Cerenkov radiation 
and will not be considered below (the usual formula 
for the intensity of the Cerenkov radiation2 is ob
tained from Eq. (19) when s = 0 if the quantity 
kR0 cos e, which in this case is wR0 /v0, is much 
smaller than unity). For an oscillator character
ized by small amplitudes, where 

kR0 = (wjc)n(w)R 0 <::; 1, 

we need consider only those terms for which 
s=±l. 

It is apparent that when (20) is satisfied 

G~ 1 (kR o COS 8) = 1 / 4 (v 0 ± Va / kR0 cos 8)2 (kR0 cos 8)2 

= v~ /4 ( 1 - ~0n cos 8f, 

since the vanishing of the argument of the o -
function yields the Doppler condition 

uJ = Q I 11 - ~0n ((u) cos 8 [, ~o = Vo/C. 

In this case the anomalous Doppler effect, 

(20) 

(21) 

({3n cos e > 1 ), corresponds to s = -1, while 
the normal effect ({3n cos e < 1) corresponds to 
s = + 1. Integrating over e we have (A =A++ A-) 
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where cos 8 is expressed in terms of w by 
means of Eq. (21). It is apparent that this result 
can also be obtained directly from Eq. (14) if the 
condition in (20) is used at the beginning. 

From Eq. (22), or, directly from Eq. (19), when 
(20) applies, with n = const we have 

e2f24R~nT \ sin"6d6 
4c" .) (1-~0ncos6) 5 ' 

6 >6, 

_ e2f24R~nT ~ sin" 6d6 A=- -4c" (~ 0ncos6-1)'' 
(23) 

6 <6, 

where 8 0 is the Cerenkov angle (cos 8 0 = c/nv0 ). 

In a number of cases it is convenient to approx
imate the function n ( w) by a step function (mo
tion in channels, radiation from bunches, cf. ref
erence 6): n ( w) = n when w < w0 and n ( w) = 1 
when w > w0 • Under such conditions, as before, 
the relations in (23) are used but for the radiation 
frequency w < w0 in A+ the limits of integration 
are cos-1 [ ( 1-n/w0 )/ j30n] and 1r while in A- the 
limits of integration are 0 and cos- 1 ( ( 1 + n/wc)/J30n]. 

The quantity w± = -A± is the energy radiated 
inside the Cerenkov cone (A-) and outside the 
cone (A+). In this case Eq. (23) coincides with 
that given by Frank. 13 

We now divide the work A± into the parts At 
and Ai, where A[ corresponds to the work asso
ciated with the attenuation or amplification of the 
particle oscillations [cf. Eq. (18)]. It is apparent 
that At is always negative whereas 

· e2QR2 T (' { 1 ( Q )2} Aci = - 4c•~: ) w2 1 _ ~ 1 - w d1u, 
~.n cos e < 1 ~o (24a) 

_ e•QR~T ~ 2 { 1 ( Q 2} Aa = -- W 1-- 1+-) dw 
4c3 ~ 0 ~2n2 w 

/3,ncos6>1 0 

(24b) 

(we may recall that Aa = Ai + Aa and the total 
work A= A0 + Aa, where A0 = A0 + A0 ). For 
n = const or a "step" 

A&'=+ (e2 D.4R~nT ;4c3 ) ~(1--~0ncos6psin3 6d6. (25) 

Thus, the radiation which appears in the region 
outside the Cerenkov cone leads to a decay of os
cillations ( Ai < 0 ) whereas the radiation inside 
the cone corresponds to the anomalous Doppler 
effect and enhancement of the oscillations ( Aa > 0). 
This result is in complete agreement with that ob
tained from quantum mechanical considerations.5•6 

One is easily convinced that the limits of integra
tion over win Eq. (24a) are further apart than in Eq. 
(24b); for example, with n = const, the limits in 
Eq. (24a) are oo, n; ( 1 + J30n) while in Eq. (24b) 

these limits are oo, Q/ (J30n - 1 ) . The integrand 
in Eq. (24a) is also larger than that in Eq. (24b). 
For this reason it is always true that I Aa I =::: Aa 
where I A;i_ I = Aa_, if in the actual region of inte
gration j30n ( w) - oo. Thus, at greater-than -light 
velocities the damping of the oscillations of the 
oscillator is weakened and can even almost vanish 
although amplification can never occur. 

We now consider an oscillator that vibrates per
pendicularly to the velocity v0; in this case 

R, = {R0 sinD.t, 0, V 0f}, v = {vacosD.t, 0, V 0}, 

a1 = {sin cp, -cos cp, 0}, 

a2 ={cos e cos cp, cos e sin cp, -sin&}; 

k = {k sine cos cp, k sine sin cp, k cos&}, (26) 

where the polar axis ( z ) has again been chosen in 
the direction of the velocity v0• Proceeding as 
above we obtain 

frz=-4~] ~Js(~)Q~,(C) 
s, s'=-oo 

X {sin 6 - v~n [cosQt (cos6sincp + coscp)]} 

X ei!"l(s-s')t0 (y) ~~ ; 

' [. va(sin<p+cos6cos<p)s'] 
G,·(C)= VosmS- kR0 sin6cos<p J,(C); 

C = kR0 sine coscp; y = w- s'Q- kv0 cos e. 

If the condition in (20) is satisfied 

T 

Ad = ~ Vo f rz dt 
0 

(27) 

e2R~T~ 3 ( Q\[Q2, 1 ( Q\2] = - --- (!)' 1 --! - -- -- )( .1- -) d!t) 
8c3 ~o w / W2 ' 32n2(w) ' w ' 

' 0 -

_ e2 Rgr ~ ( n) [Q• 1 ( Q \•] Az = - -8 3 Q w3 1 -'- - - ..L -. -- ><-- ' dw 
c t'o ' w w2 · ~ tn2 ( w) , w ) ' 

0 (28) 
where 

Furthermore, 

frx = - :: ~ ~ J,o:. [(sin 9 +cos 6 cos cp) 
ss' 

----~ (cos'" +- sin ro cos 6)] eiQ(s-s')t d~ . 
C T T 11 2 ' 

(29) 

T 

Ax Aa =~ Vafrxdl ~-A:T r-A;, 
0 

(30) 
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In this case it is also true that I Aa I ~ Aa: For 
helical motion, for example along a magnetic field, 
when n = WH = (eH0 /mc)V1-v2/c2, it is neces
sary to set R = { R0 cos nt, R0 sin nt, v0t}; it is 
easy to compute the radiation force. fr: 

00 

e• \' frz=-ca ~ ~nw2o(y)<l>ssinBdBdw, 
S=-00 

J2 kR · a) [ . a Qs ] [ sva cos 6 . a] 
<l>s = s ( o sm v - sm v +rosin 6 kRo sin 6 - Vo sm v 

v~n •2 • 
+-cos 9J5• (kR0 sm 9); c 

00 

e2 sin Qt "l \ a . frx = - cs ..:::.J .) nw•o (y) <l>s sm BdBdw, 
S=-00 

<I>~ = (n~o cos 8- I) VaJ~2 (kRo sin 8) 

(n~o- cos 6) s ( sv a cos 6 . \ 2 • 
+ kR · 6 k-R . 6 -vosm8) ls(kR0 sm8) osm osm 1 

(31) 

where fry differs from frx by the substitution of 
-sin m for cos m. The work performed by this 
force and its components A~ is equal to the ex
pressions in (28) and (30) multiplied by 2 if the 
condition in (20) is satisfied. 

If the charge moves in a very narrow channel 
or slit in the case of oscillations along v 0 [cf. 
Eq. (13)] there is no change in the radiation in
tensity (the work A±) and the reaction force. For 
an oscillator which oscillates along the x axis 
[cf. Eq. (26)] the radiation intensity remains un
changed for motion in a narrow slit in the plane 
y = 0, Finally, in the case of helical motion which 
takes place in a narrow cylindrical channel of cir
cular cross section the radiation intensity is mul
tiplied by the factor 4€2 I ( E + 1 )2• The remarks 
concerning channels follow from the results ob
tained in reference 4. 

3. In the case of an anisotropic medium we may 
consider motion along the axis of a uniaxial non
gyrotropic crystttl, with the electron assumed to 
be oscillating in the same direction. Under these 
conditions 

R = {0, 0, Vo +Rosin Qf}, k = {0, k sin a, k cos B}; 

a1 = {0, cos 8 + K1 sin 8,- sin 8 + /\1 cos 8}; 

a2 ={I, 0, 0}, K1 = (ni-sj_)cos8;'sj_sin8, 

(32) 

where n1 is the index of refraction for the extra
ordinary wave which, in the present case, is the 
only one radiated: K1 is the ratio of the electric 
field components parallel and perpendicular to the 
vector k in the extraordinary wave; this electric 
vector is parallel to the polarization vector a 1, 

the length of which satisfies the condition 
n12 {Ella~+ qa~} = 1 (cf. reference 7). 

Substituting Eq. (32) in Eq. (11), we obtain re
sults similar to those obtained for the isotropic 
medium, where we have in Eq. (21) n1,2 (e, w) 

in place of n ( w). Here we present only the ex
pressions that correspond to Eqs. (22) and (24): 

e2 R2T \ w3z~ (w) sin2 6dw 

=- 4c30~ 0 ~ (• j_ sin2 6 + e 1, cos• 0) 2 11- (ctg e I n1) an, I ae I ' 
(33) 

+ e2!:2R~T \ w2el ( ro) sin2 e dro 

Aa- ==t= 4c3 ~ 0 .) (•J_sin2 6+•:1 cos2 0) 2 f1-(ctg6;n,)anJ/a6j 

e•Q4R2T ~ n5 sin3 6d0 _ =F __ o_ 1 

- 4c" e~1 11-;3 0n1 cos6j 3 f1-~ocos6a(ron1 )/aroj ' 
(34) 

where A = A+ + A- = A0 + Aa = A0 + A0 + Aa + Aa 
[cf. Eqs. (18) and (22)] while cos e, sine and 
n1 ( w, e) must be expressed in terms of w through 
the Doppler expression (21). 

Thus, for the normal effect in Eqs. (33) and (34) 

s = l, cos8 = (l-!2/w)/~0ndw,8(w)] 

and the integration is taken over the region for 
which {30n1 cos e < 1; for the anomalous effect 

s=-1, cos8=(l+D;w)/~0n1 

and the integration is taken over the region for 
which f3on1 cos e > 1. We may note that the factor 

which appears in Eqs. (33) and (34) is also equal 
to atz, when E1 =Ell equals sin2 e and this cor
responds to the transition from Eqs. (22) to (24). 

In an anisotropic medium it is possible for am
pliflcation as well as attenuation to occur (in this 
case I Ai, I > Ai ). As an example we consider the 
following idealized case: €1 and EJJ are independ
ent of frequency and E 1 > 0 and E 11 < 0. In this 
case nt ( e 00 ) = 00 at the angle e 00 determined 
from the condition E1 sin2 Boo+ EJJ cos2 Boo= 0. 
Furthermore nt is a minimum and equal to E 1 
when e = 0 while rr/2 > e > Boo for nt < 0 and 
propagation is impossible. If now f3oE1 > 1, it is 
always possible to choose Ell in such a way that 
the Cerenkov angle 80 = cos-1 ( 1/f3on1 ) is larger 
than 8 00 • Under these conditions there is no 
Cerenkov radiation and in the forward direction 
(for e < rr /2) only anomalous Doppler waves are 
radiated. In the backward direction ( rr - e < eoo ) 
normal Doppler waves are radiated but here 
( 1 - {30n cos e ) = ( 1 + {3 0n I cos e I) and, as follows 
from Eq. (34), the work I Aa I is always smaller 
than the work Aa_. 

It should be noted that at large values of n both 
in anisotropic and in isotropic media it may turn 
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out that Eq. (20) is not satisfied; a number of the 
formulas given here are then inapplicable. This 
situation is especially important for anisotropic 
media in cases in which the signs of E 11 and E 1 
are different and n2 becomes infinite over a wide 
range of frequencies. 

The case of helical motion of a charge in a 
magneto-active plasma* has been eonsidered in 
detail in another paper .14 Here we limit our
selves to the remark that if there lls an anomalous 
Doppler region we know that there will be a weak
ening of the radiation dampening which leads to a 
reduction of the particle velocity perpendicular to 
the external magnetic field. At certain values of 
the parameters the damping becomes negative, 
i.e., oscillations are excited. 

4. As noted above, the difference in the signs 
of the forces which affect the oscillatory motion 
of a particle for the normal and anomalous Dop
pler effects are in complete agreement with the 
results which follow from simple quantum me
chanical considerations.5•6 In parti.cular, in the 
anomalous Doppler effect the system makes a 
transition from a lower level to a higher level; 
this corresponds to excitation rather than dissi
pation. Hence, from the quantum-mechanical 
point of view the system (for example a moving 
oscillator ) must have some probability of making 
transitions to higher and higher oseillatory levels 
so long as these transitions are consistent with 
the condition {30n ( w) cos 8 > 1. At the same time, 
in the classical approximation, in an isotropic me
dium the oscillations are always attenuated, i.e., 
the system makes transitions to lower levels al
though the rate of "fall" may be slowed down con
siderably at velocities greater than that of light. 
There is actually no inconsistency. Consider a 
wave packet, composed of wave funetions with 
approximately the same energies (energies of 
oscillatory motion). At velocities below the ve
locity of light there are only transitions to lower 
levels and, aside from the reduction in the mean 
energy of the packet, the width of the energy spec
truro is increased. At velocities greater than the 
velocity of light it is also possible to have transi
tions to upper levels and the variation of the en
ergy spectrum of the packet is different; in par
ticular, in the total ensemble of states there will 
be a state with energy greater than the initial en
ergy. In this sense we have excitation of trans
verse oscillations. However, in the classical 

*This case is automatically realized for motion of an elec
tron in a plasma in a magnetic field. 

approximation, i.e., if one neglects the spread of 
the packet, only the change in the mean energy of 
the packet is important. This change, as has been 
shown, always corresponds to a reduction in mean 
energy in an isotropic medium. It can be shown 
that at velocities greater than the velocity of light 
the system becomes unstable to some extent. In 
the first place we have the excitation of oscillations 
in the quantum approximation, as already noted; 
secondly, in an anisotropic medium it is possible 
to have excitation of oscillations even in the clas
sical approximation; in the third place (and in 
practice this is the most important) there is an 
instability and excitation of oscillations when we 
consider a particle bunch moving at velocities 
greater than light rather than a single particle. 15 

This excitation is associated with the fact that the 
beam exhibits negative absorption (reabsorption) 
in the region of the anomalous Doppler frequencies 
(in this region, in absorbing a photon the system 
makes a transition in the downward direction 
whereas a transition in the upward direction cor
responds to induced emission). It is completely 
obvious that this instability of "superlight" bunches, 
which occurs in an isotropic medium even in the 
classical approximation, is closely associated with 
the problem of radiation reaction which has been 
considered above in connection with a single par
ticle. 
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