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We have evaluated the electronic part of the thermal conductivity of a superconductor taking 
anisotropy into account. We show that the temperature dependence of the thermal conductiv
ity may be different along different crystallographic axes for uniaxial crystals. 

THE electronic part of the thermal conductivity 
of superconductors was evaluated by a number of 
authors2•3 on the basis of the theory of Bardeen, 
Cooper, and Schrieffer. 1 In these papers an iso
tropic model of a superconductor was considered. 
In the following we shall give a similar evaluation 
taking anisotropy into account. It will be shown 
that in some cases the temperature dependence 
of the coefficient of thermal conductivity may 
change with direction. 

Bogolyubov, Tolmachev, and Shirkov4 obtained 
the energy spectrum of a superconductor taking 
anisotropy into account by the same method as 
was used for the isotropic ease. One can in that 
case start either from Frohlich's Hamiltonian, 
or from the model Hamiltonian of Bardeen's. In 
the given case the model Hamiltonian can be writ
ten in the form 

(1) 

where J.l. is the chemical potential. The function 
g (k1, k2; k1, k2 ) satisfies the conditions 

g(kl'• k2'; kl> k2)=g(kl> k2; k/, k/) 

(2) 

because of its in variance with respect to a permu
tation of the particles and to spatial inversion. 
Performing, furthermore, a transformation from 
the particle operators ak to the excitation oper
ators ak according to 

ak•;, = UkOI:ko + VkOI:tt. 

ak-•;, = ukockl - Vk<Xko. u~ + v~ = 1 (3) 

and considering in the Hamiltonian only the pair 
interactions for particles with equal, but opposite 
momenta, we find the excii;ation spectrum in the 
form 

( ek is a unit vector in the k direction). The 
anisotropic gap ~ ( ek) is determined by the 
condition* 

(4) 

Ll(ek) =L}g(k, -k; k', -k') Ll(ek·)/2:::k'· (5) 
k' 

The transformation parameters Uk and Vk are 
in this case equal to 

We shall assume that the electronic thermal con
ductivity is caused by the scattering of the excita
tions by impurities. The Hamiltonian for the in
teraction of an electron with an impurity is equal 
to 

(7) 

Performing the u, v transformation (3) we get the 
Hamiltonian for the interaction of the excitation 
with an impurity 

(8) 

The transport equation for the excitations 

on _J_ on Do _ iJn ~"__ ~= 1 (n) 
ot ' ilr ilk ilk ilr (9) 

[I (n) is the collision integral] assumes the follow
ing form 

n (iiE \ p~k ok '\!T) = 1 (n). (10) 

under stationary conditions and in the presence of 
a temperature gradient. 

We shall perform the further calculations for 
the case of sufficiently low temperatures when the 
inequality 

(11) 

*We have assumed that the function g depends only on the 
angles characterizing the directions k and k'. 
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is satisfied. The magnitude of the gap ~ (ek) de
pends on the direction. It follows that the gap will 
take on minimum values ~min for some extremal 
directions. It is also clear that there will be for 
each extremal direction a corresponding equiva
lent extremal direction in the opposite direction. 
For the case of temperatures near T c when the 
values of ~ are small, an analysis of the trans
port equation in the anisotropic case becomes not 
very instructive. At low temperatures, however, 
when the value of ~ practically ceases to depend 
on the temperature, one can solve the problem 
completely and one can take as the distribution 
function for the excitations the classical Boltz
mann function. 

Since the number of excitations moving in a 
given direction will basically be determined by 
the exponent exp (- ~/T), it is natural that the 
largest contribution to the energy current will be 
given by excitations moving near to the extremal 
directions. It is thus sufficient to perform the 
analysis of the transport equation only in the neigh
borhood of these directions. The problem consists 
thus in finding the distribution function for the ex
citations moving near the extremal directions. 

For elastic scattering by an impurity only the 
energy is conserved in the anisotropic case. As 
to the momentum of the excitation, it~ absolute 
magnitude is clearly not conserved. The collision 
integral I ( n ) is in the case under consideration 
equal to 

I (n) =- z; ~ [Vkk'[2 (ukuk'- vkvk')2 

X o (sk- sk') (nk- nk') d-rk'· (12) 

We have used here {8) and the fact that the distri
bution function is classical. We further use Eqs. 
(6) and integrate the 6 -function in {12) over d~k'. 
We get as a result 

T. ~· (~k+~k')2 (. 82-r ) ' 
I (n) =-Vi J [Vkk'(2 ek [~k'[ 8~k,oo' do (nk- nk·) (13) 

(do' is an element of solid angle ) . 
We write the required non-equilibrium function 

nk in the form 

(14) 

where n~ is the equilibrium distribution function. 
Substituting (13) into (10) we get then the following 
integral equation to determine the function Xk= 

(15) 

This equation can easily be solved for the extremal 
directions. We consider the case when there are 
only two (opposite) extremal directions. 

Let the gradient V'T be directed along the ex
tremal direction and let us denote by J. the angle 
between V'T and the vector k. We introduce, 
moreover, the following notation (for the sake of 
simplicity we have assumed ~ to be independent 
of the azimuthal angle cp): 

(~" = iP~ I o&2 ). (16) 

Taking into account that the temperature is low we 
can everywhere in (15) neglect the quantity ~k 

compared to ~. As a result the integral Eq. (15) 
assumes the following form: 

1 

!_ 2 ~· 2 Ay = Vo (Y + y')2 (Xy- ;(y•) dy' 
"lk 

-1 

1 

+ v~ ~ (y + y')2 (xy + xy·)dy', 

where 

-1 

tt (aE)2 tl2tl". ( a•-r )-1 
A=- no ak F----ro akao F lvTI. 

(17) 

(18) 

v0 and V 7r are the matrix elements for scatter
ing over an angle 0 and an angle 1r, respectively, 
for excitations moving initially in the extremal 
direction. The first integral arises from integrat
ing in (15) over the region in the neighborhood of 
the extremal direction, and the second integral 
from the region near the opposite direction. In 
deriving (17) we have used the fact that 17k = 17k' 
because of the conservative law for energy. The 
quantity ~" occurring in the equations is the 
seco:ad derivative of the gap ~ with respect to 
the angle J. near its extrema (it is obvious that 
~' = 0 ) . Derivatives of E and T with respect to 
k are taken in the extremal direction on the Fermi 
surface. Finally we have used the obvious conse
quence of Eq. (15), namely, that Xy for the direc
tion opposite to the extremal direction differs from 
Xy only in sign. 

From Eq. (17) one sees easily that Xy is an 
odd function of y, i.e. 

XY =-X-u· (19) 

To find Xy from (17) we get, if we take this fact 
into account, the following equation 

XY = A</>y/'1/~' 
1 

y = 2 ( V~ + V~) (y2 + }) ~Y-!- 2y (V~- V~) ~ </>u·Y'dy'. (20) 
-1 
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The solution of Eq. (20) is elementary 

<i'u =Y/ 2 (y2 + ~ )[(V~ + vg) 

+ 2(1-rr;3y3)(V!- V~)Jo (21) 

There only remains for us to evaluate the en
ergy current 

(22) 

We only need perform the integration in (22) over 
the regions near the extremal directions. The dis
tribution function near the extremal directions can 
be written in the form 

(23) 

Substituting (21) into (22) we get after some simple 
transformations 

(24) 

From this we finally get for the coefficient of ther
mal conductivity along the extremal direction 

~ 81;.~2 'iJE \ 2 1 -!1/T 
x II ~ s,r ( ok lF 1osv;, + oo2vg e 0 

(25) 

To evaluate the coefficient of thermal conductiv
ity along directions perpendicular to the extremal 
one, it is necessary to solve anew the integral 
Eq. (15). We now take the temperature gradient 
along an axis perpendicular to the extremal direc
tion (x axis). We get then easily the following 
equation for the function x. if we go over to the 
variables (16), 

cos A 1~ cp "1Jk y ~~" Y r ' - y-

1 

= (V~ + V!) ~ (y + y')2 (X"- Xu') dy'o (26) 
-1 

The solution of this equation is also obtained ele
mentarily and we get 

1r-- 2 2 
Xu= <i'uAcostp/'ljk r 66"(V0 + V,), 

~Y = 2 (Y2 ~ 1/s) ( VT="if+ . ~ 1 -2 (1 ~ 7t/3 V3)) o 

The heat current in this case is equal to 

(27) 

(28) 

(29) 

Substituting here x from (27) and going over to 
the variables 1Jk and y we get 

21tAe-l).fT 

q1_= (M")"(Vg+V~) 
00 2 !. 

X ~ 7Jtd'fik exp {- ;:r} ~ <l'u V 1 - Y2 ydy, (30) 
0 -1 

or finally 

101;.~2 (iJE )2 e-MT 0 

X l_ = 37t~" iJk F 2 2 
V0 + V" 

(31) 

The ratio Kl/Kil is equal to 

x1_;x 11 = (2T I 6") (1.8V! + 0°2V~)/ (V! + V~). (32) 

The thermal conductivity in a direction perpendic
ular to the extremal one is thus less than its ex
tremal value roughly by a factor T I .6.. The main 
(exponential ) part of the temperature dependence 
of K is here, of course, the same in all directions. 
A qualitative picture of the dependence of the co
efficient of thermal conductivity on the angle e, 
reckoned from the extremal direction, at low tern
peratures will be in the form of a rosette, shown 
in the figure and determined by the following obvi
ous relation 

X= Xl\ COS2 8 + X1_ sin28o 

Dependence of the thermal conductivity 
on the angle e (for the case Xj_ I X II = 1/o) 0 

(33) 

The situation considered here, where there is 
only one pair of extremal directions, is clearly 
rare. It could be realized in the case of a uni
axial crystal with the extremal direction along 
the main axis of symmetry. More typical will be 
the case where there are several extremal direc
tions which are not lying in one plane. One can 
see that the temperature dependence of the ther
mal conductivity will in that case be unique in all 
directions in the approximation considered here. 
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The preliminary results of N. V. Zavaritskil 
on the thermal conductivity of Ga in the super
conducting state5 indicate the presence of a dif
ferent temperature dependence along the direc
tions of the crystallographic axes. If these re
sults are confirmed this will mean that a situation 
takes place in Ga where there are two extremal 
directions for .6.. 

In conclusion I express my deep gratitude to 
L. D. Landau for discussing the results of the 
present paper. 
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