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The "asymptotic Born approximation" is formulated from the scattering amplitude for a 
potential that coincides with the true potential at sufficiently large radii. The order of 
magnitude of the relative error in the determination of the scattering potential at a point 

00 

r is J U ( r') r' dr'. The case where the scattering amplitude is given in a finite energy 
r 

interval is considered. 

INTRODUCTION 

THE methods presented in the literature for solv
ing the problem of potential reconstruction use, as 
data on scattering, the phase corresponding to one 
of the values of the orbital momentum.1- 3 An ex
ception is the work of Moses, 4 who uses the am
plitude of the backward scattering. The use of the 
scattering amplitude instead of the phase is more 
logical, first because it may, in principle, be de
termined from the scattering cross section with
out a phase analysis, 5 and second because the use 
of the scattering amplitude makes it possible to 
consider arbitrary and not only spherically sym
metric potentials. 

In the case of an arbitrary potential, the scat
tering amplitude depends on five values: the en
ergy and the components of two unit vectors, in 
the directions of the initial and final momenta. 
The potential depends only on three components 
of the radius vector. The resulting indetermi
nacy of the inverse problem is easiest to elimi
nate for weak potentials: in that case, the scatter
ing amplitude depends, in first approximation, 
only on the vector of momentum transfer, i.e., 
on three parameters. A simple Fourier trans
formation is then sufficient to reconstruct the 
potential simultaneously in the whole space. For 
strong potentials, the first Born approximation 
for the scattering amplitude is correct only for 
large energies and for not very small vectors 
of momentum transfer. This means that, in the 
case of strong potentials, the first Born approxi
mation for the potential is meaningless. 

In the present paper we shall construct an 
"asymptotic Born approximation" for a potential 
having the following properties: in the case of 

weak potentials, it coincides with the usual first 
approximation and yields the real potential simul
taneously in the whole space. As the potential in
creases, the accuracy of the approximation de
creases, but not uniformly; it decreases faster 
near the central regions and slower near the po
tential boundary. (Only potentials lying wholly 
in a certain finite region of the space are con
sidered.) Thus, the "asymptotic approximation" 
for a potential of any value will correctly recon
struct its behavior in a certain layer near the 
boundary; the thickness of the layer is determined 
by the value of the potential. 

The simplicity of constructing the "asymptotic 
approximation" makes it easily possible to assess 
errors introduced by the finiteness of the energy 
interval in which the scattering amplitude is given. 
Thus, in the framework of this approximation, one 
can disregard the academic problem of determin
ing the potential from data at all energies from 
zero to infinity, and approach the solution of the 
practical problem formulated by Smorodinski1, 6 

that of reconstructing the potential from a scatter
ing amplitude given in a finite energy interval. The 
over-determination of the problem is also removed 
in this approximation. It is found that, in order to 
construct the "asymptotic approximation," only the 
dependence of the scattering amplitude on the mo
mentum transfer vector is essential. 

All proofs use the representation of the scatter
ing amplitude by a Born approximation series (the 
derivation of which can be seen for instance, in the 
paper by Moses, 4 Sec. 5). The one -dimensional 
Fourier transformation of this series for fixed 
directions of the incident and scattering particle 
was used by Wong7 to obtain the dispersion rela
tions in the nonrelativistic case. In the same 
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paper, a method of determining the potential boun
dary from the scattering amplitude is given. 

Strictly speaking, all assumptions of the pres
ent paper are correct only for potentials for which 
the Born approximation series converges uniformly 
for all energies. However, the character of there
sults makes it possible to assume that the use of 
these series is only a subsidiary means, which 
makes the proof simpler, but the basic result is 
correct also for potentials for which the Born 
approximation series for the scattering amplitude 
is divergent. 

1. FOURIER TRANSFORMATION 

The scattering amplitude is a function of the 
wave number k and the two unit vectors n1 and 
n2 in the direction of the initial and final momen
tum of the particle, defined only for positive values 
of k. It will be convenient, however, to consider a 
definition extended to the negative values of k by 
means of the equation 

f (nz, k, n1) = r (n2, 1 k j, n1), k < o. (1) 

We shall introduce new variables n and N: 

N = (n2 + n1) I 2, N <. I, 

and the momentum transfer vector q: 

(2) 

(3) 

q = k n2 - k n1 = k n, q0 = q I q, (4) 

The vectors n and N are orthogonal and their 
absolute values are determined by the polar scat
tering angle ~= 

cos & = (n2n1), n = 2 sin (& 1 2), N =cos (&I 2). (5) 

The scattering amplitude can also be considered 
as a function of the new variables q, q0, and N 
where, according to Eq. (1), the value q takes all 
possible values - oo < q < oo. 

We shall fix the direction of the initial and final 
momenta or, which is the same, of the vectors qo 
and N, and we shall perform the following Fourier 
transformation: 

00 

F (p, q0 , N) = 2 ~ f (q, q0, N) exp (iqp) dq 
-00 

00 

- 2 ~ f (n 2 , k, n1) exp.(iknp) d (kn). (6) 
-oo 

The function F may be written as a series 
00 

F (p, q0, N)= (4rrf1 ~ (-1/Ut (p, qo, N), (7) 
1=1 

the terms of which are determined by the scatter-

ing potential U ( r), and which represent the 
Fourier transformations of the terms of the Born 
approximation series 

co 

Ut(p, qo, N) = 2 ~ Bt(n2, k, n 1)exp (iknp)ndk. (8) 
-oo 

Because of the exponential dependence of Bz on k, 
after integrating over dk in the expression for Uz, 
the one-dimensional 6 -function appears under the 
sign of integration over the coordinates: 

UI(p, q0 ) = ~ U(r)o(- q-0r + p)dr, 

Ut (p, q0 , N) = (4rr)-l+l 

(9) 

~ U (x) U (z1) ... U (z1_ 2) U (y) 
X I 1 I o (- n2x + !x - z1 ! + ... x- Z1 ••. 1 z1_ 2 - y 

···+lzt-z-Y!+nly t-np)ndk ... dy. (10) 

Setting the arguments of the 6 -function equal to 
zero, we obtain equations that determine the range 
of integration over the coordinates. 

The first term is especially simple 

U1 (p, qo) = ~ U (r) dS, (11) 

and reduces to a double integral of the potential in 
the plane determined by the following equation: 

rqo = p. (12) 

This plane is perpendicular to the vector q0, and 
its distance from the point of origin of the coordi
nates is equal to p if we consider the direction of 
q0 as positive. 

The remaining terms are analyzed in detail in 
the Appendix, where it is shown that the integration 
over all variables is carried out only in that part 
of the space where 

rqo::>P· (13) 

The first conclusion we can draw is that if the 
plane (12) lies beyond the potential boundaries 
(see figure, straight line 1 ), then the transforma-
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tion (6) of the scattering amplitude equals zero: 

f(p,q0,N)=0, p;;>R(q0). (14) 

The radius of the potential in the direction q0R ( q0 ) 

is equal to that value of p for which the plane (12) 
is tangent to the potential boundary (straight line 2 
in the figure). Equation (13) was first obtained by 
Wong.7 

In the Appendix it is also shown that, for p < 
R ( q0 ), the value of the first term in the series (7) 
and the sum of the other terms can be estimated 
in the following way: 

I Ut(p, qo) I= Or2 • 

I ~r Uti= (0f2) (0A 2
), 

(15) 

(16) 

where r represents the mean linear dimensions 
of the area cut in the region U ~ 0 by the plane 
(12). These estimates are basically correct only 
for small values of the difference .6. : 

(17) 

The value of X in Eq. (16) is equal to the smallest 
of the numbers r, .6. 

~ =min (r, 6}. (18) 

From the estimates (15) and (16), it follows that in 
the equation 

F (p, qo, N) = ul (p, qo) [l + E (p, qo, N)] (19) 

the value of E for sufficiently small .6. is deter
mined by the following approximate relations 

IE (p, qo. N) I = 0 ~ ~ v r2 

=I U!(p, qo) I= IF (p, <Jo, N) I· (20) 

We summarize the results of this section: Let 
the scattering amplitude be given in such a way 
that the vector q0 assumes all possible directions 
and the length of the momentum -transfer vector 
goes through all possible values from zero to in
finity for each direction of q0. In such a case, the 
scattering amplitude permits us to construct a 
function F (p, q0, N) for all values of p and 
directions q0• According to Eq. (14), this function 
is identically equal to zero for sufficiently large 
values of p. The largest value of p for which F 
is different from zero determines the potential 
boundary in the direction q0, namely the value 
R ( q0 ) . It is evident that the envelope of all tan
gential planes obtained in such a way determines 
the exact potential boundary. For values of p 
smaller than R ( ~) but sufficiently close to it, 
and where the value of .6. is small, the following 
approximate equation is correct: 

(21) 

which determines the integral of the potential in 
the plane (12). The relative error of Eq. (21) is 
equal to the absolute value of the function F, i.e., 
the integrals of the potential in planes cutting its 
external layers are determinated very accurately, 
but only rather roughly in planes which encompass 
the central regions. 

We shall note that, for a centrally symmetric 
potential, the value U 1 ( p, q0 ) is given by the 
integral 

00 

ul (p, qo) = 21t ~ u (r) r dr, (22) 

which determines the accuracy of Eq. (21). 
It is interesting to obtain equations which deter

mine the potential of U ( r) itself rather than in
tegrals of it. It will be shown below that Eq. (21) 
makes it possible to construct a certain appro xi
mate potential F which has the same boundary as 
the true scattering potential and coincides with the 
boundary with an accuracy given by Eq. (20). 

2. THE ASYMPTOTIC BORN APPROXIMATION 

We shall make use of the approximate expres
sion (21) for the inverse transition from the func
tion U 1 to the potential U ( r ) . If the function 
U1 (p, q0 ) were known accurately, then, for a 
single-valued reconstruction of the potential, it 
would be sufficient to perform two Fourier trans
formations on it: 

u (q) = ~ ul (p, qo)exp (- iqp)dp, q > 0 (23) 

and 
U (r) = (21tr3 ~ U (q) exp (iqr) d q. (24) 

It can easily be seen that the function F (p, q0, N) 
is not a transformation of the type U 1 ( p, q0 ) of 
any fictitious potential and, consequently, it is im
possible to apply transformations (23) and (24) to 
it directly. In fact, were such a fictitious potential 
to exist, the function F would have the form of a 
double integral 

f(p,q0,N)~ ~ F(r)dS, (25) 

and would therefore satisfy the condition 

F (p, q0 , N) = F (- p, - q0 , N). (26) 

As can be seen from Eq. (13), which determines 
the region of integration, F (p, q0, N) depends on 
the behavior of the potential in the region rq0 2:: p, 
and F( -p, -q0, N) depends on the behavior of the po
tential when rq0 ::::: p, so that condition (26) cannot be 
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satisfied. However, it is clear from these consid
erations how to circumvent this difficulty. To this 
end, we introduce a new function F by means of 
the two equations 

f F (p, Qo, N), 
F (p, Qo. N) =\I(- p, -Qo. N) 

p > 0, 

p <0. (27) 

A certain approximate potential F ( r, N ) corre
sponds to the new function. To obtain a three
dimensional Fourier component of this potential, 
we substitute Eq. (27) in Eq. (23) and make use of 
the definition (6) of the function F. We have 

j+(q, N)=~F(p, q0 , N)exp(--iqe)dp=~[f(q', Qo, N) 

X •\ (q'- q) + f (q', - q0 , N) o+ (q- q')] dq'. (28) 

The final result can be formulated in the follow
ing manner: If the scattering amplitude is trans
formed according to Eq. (28), and we then use the 
transformed amplitude for constructing the first 
Born approximation for the potential, then the ap
proximation obtained will have exactly the same 
boundary as the true potential and will coincide 
with it near the boundary with an accuracy of order 
of magnitude equal to the product 

U (r) ll2 (r), 

where ~ is the shortest distance from the point 
at which the potential is determined to the boun
dary, and IT is the average value of the potential 
between the point r and the boundary. 

Let us return to the experimental data necessary 
for reconstructing the potential. It is clear that the 
unit vector q0 does not determine the scattering 
amplitude in a unique way: there still remains an 
ambiguity in the choice of the vector N. Accord
ing to Eq. (19)- (21), for any choice of the vector 
N, the reconstructed potential will coincide with 
the true one in a single layer near the boundary 
with the same accuracy. This means that not only 
the potential is obtained, but also the condition 
which should be satisfied by the scattering ampli
tude of any potential. The transformed scattering 
amplitude determines a fictitious potential F ( r, N), 
the value of which is independent of the vector N 
within the limits of the error (20). 

In any practical case, the scattering amplitude 
will be given only up to a certain finite value of 
qmax· It is evident that the replacing of the in
finite range of integration by a finite one leads to 
the averaging of the approximate potential F ( r) 

over a certain volume, the linear dimensions l of 
which are determined by the value <hnax= 

(29) 

If it is necessary that the relative error in the de
termination of the potential be smaller than e:, 
then the value of l should satisfy the condition 

(30) 

where ~ = ~ ( e:) is determined by the condition 
that, in a layer at the depth ~ near the boundary, 
the approximate potential F ( r) is equal to the 
true potential U ( r) with the relative error not 
bigger than e:. This condition is satisfied if 

(31) 

From Eqs. (29), (30), and (31), and substituting for 
<hnax the maximum energy up to which the scat
tering amplitude is known, 

(32) 

we obtain a new inequality 

Emax (;: 2 I ·'1) IV I S-1 sin-2 (& / 2). (33) 

From this inequality it follows that, in practice, 
it is more convenient to use the backward scatter
ing amplitude, in which case it is necessary to 
measure it in a minimum energy interval. 

Thus, for instance, for a rough determination 
of the order of magnitude, for the case where 
e: ~ 1, the backward scattering amplitude should 
be measured to the value 

E max > 2 j V ( r) I (34) 

and, to the contrary, if the scattering amplitude at 
an angle 1r is known up to the energy Emax. then, 
on this basis, it is impossible, to reconstruct the 
potential in that region even roughly, if its order 
of magnitude is bigger than or equal to Emax· 

CONCLUSION 

All the results of the present paper are also 
applicable to the scattering of particles with spin, 
but in that case it is necessary to consider the po
tential in a form of a matrix and to introduce the 
spin function into all plane waves. 

Strictly speaking, all the above results have 
been proven only for bounded pot8ntials for which 
the Born approximation series converges for all 
energies. However, the series may diverge, owing 
to integration over the whole range where the po
tential is different from zero, while in the series 
(6) the integration extends only over the external 
segment of the potential. Therefore, it seems 
highly probable that the divergence of the series 
(7) is quite independent of the behavior of the po
tential in the deep regions, since the use of the 
total series of the Born approximations is simply 
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the most convenient method of proof. 
In that case, in order that the theorems be cor

rect it is only necessary that the transformation 
U 1 ( p, q0 ) tend to zero for p - oo, which is the 
case for all potentials that decrease at infinity so 
that r 2U ( r)- 0 for r--oo. 

The author wishes to express his deep grati
tude to Prof. Ya. A. Smorodinski'l for valuable ad
vice and discussion in the course of the work. 

APPENDIX 

The sum - n2x + n1y expressed in terms of the 
variables (2)- (4) in the new coordinates Z and z 

Z = (x + y) I 2, 

z = (x -- y) 1 2, 

can be written in the following way: 

(A1) 

(A2) 

- n2x + n 1y = -- (n q0Z r 2 Nz). (A3) 

The sum I x- z1 I + I Zt- z2l + ... + I zz-2- Y I 
represents the length of a broken line connecting 
the ends of the vectors x and y; it is greater 
than the length of the vector x - y = 2z: 

i x- Z1l :-··.-~-I Z1-2- y I= 2z -; fl, ? > 0. (A4) 

Making use of all these transformations, we shall 
express the vanishing of the argument of the 6-
function in the l -th term of the series (7) [see 
Eq. (10)] in the following way: 

n [qoZ- p] , · 2 [z -; Nz] r fl. (A5) 

On the right-hand side we have a sum of positive 
values [see Eq. (3)]. Therefore the difference on 
the left hand side should also be positive. 

(A6) 

For a fixed Z and {3, the projection of the vector 
z o,n the direction q0 may be expressed as a func
tion of the angle a between the vectors N and z: 

!q0Zj=sinx[n(q0Z--p)-n[2(1--Ncosx)]. (A7) 

In the last equation, we make use of the orthogo
nality of the vectors q0 and N. This function has 
a maximum if cos a= N. Making use of expres
sions (5) for N and n, we obtain for the maxi
mum value of this projection 

I Qo, Z ! max = QoZ - p, (AS) 

from which follows the required limitation of the 
integration region over variables x and y: 

XQo >" p, YQo ;> P· (A9) 

The variables Zi remain to be considered. It 

is clear that any of the vertices of the broken line 
2z + {3 cannot deviate from the end of vector Z in 
the direction q0 by more than z + {3/2, while the 
maximum deviation is attained when the directions 
of the vectors q0 and z coincide; in that case 
zN = 0. The last equation makes it possible to 
estimate the sum z + {3/2 from Eq. (A6) 

z + ~;2 =sin (-&/2) [q0Z- p]. (AlO) 

Whence follows the proof: 

z,q > p. (All) 

Thus, the range of integration over the variables 
x and y extends over the crosshatched segment. 
The contribution of the integral over these vari
ables to the total integral Uz can be estimated as 
the product 

(Al2) 

For fixed vectors x and y, the vectors Zi all 
lie in a sphere of radius 

sin (&/2) [qoZ- p), 

with its center at Z, and therefore the integral 
over these variables contains no r but a certain 
~ equal to the smallest of the numbers r, ~-

The total integral U z can be estimated in the 
following way: 

(Al3) 

If the expressions obtained are summed up over l 
from l = 2 to oo, we obtain the following estimate 
for the sum of all terms of the series (7) without 
the first one: 

j,~ u~[::::: <Dr 2 )(U 6 2);[ 1 ... (0 t. 2 )J. (A14) 
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