SOME SYMMETRY PROPERTIES IN PROCESSES OF ANTIHYPERON PRO-DUCTION WITH ANNIHILATION OF ANTINUCLEONS

CHOU KUANG-CHAO

Joint Institute for Nuclear Studies

Submitted to JETP editor November 20, 1958

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 938-939 (March, 1959)

LET us consider the reaction

$$p + p \to \Sigma^- + \Sigma^-. \tag{1}$$

We denote the amplitude for it by $f(p_i, p_f, \sigma_p, \sigma_a)$, where p_i and p_f are the relative momenta in the initial and final states, and σ_p and σ_a are the Pauli matrices of the particles and antiparticles. From invariance with respect to charge conjugation it follows that

$$f(\mathbf{p}_i, \, \mathbf{p}_f, \, \boldsymbol{\sigma}_p, \, \boldsymbol{\sigma}_a) = f(-\mathbf{p}_i, -\mathbf{p}_f, \, \boldsymbol{\sigma}_a, \, \boldsymbol{\sigma}_p), \quad (2)$$

If the initial state is unpolarized, then it is not hard to prove by Eq. (2) that the polarization vectors of the hyperon (P_{Σ}) and of the antihyperon (P_{Σ}) in the final states are given by

$$\mathbf{P}_{\Sigma} = \mathbf{P}_{\widetilde{\Sigma}} = A \left[\mathbf{p}_i \mathbf{p}_j \right] / \left[\left[\mathbf{p}_i \mathbf{p}_j \right] \right], \tag{3}$$

where A is a function of the scalar $(p_i \cdot p_f)$.

Measurement of the angular asymmetries in the decay of the Σ^- and $\widetilde{\Sigma}^-$ produced in the reaction (1) gives the ratio

$$\mathbf{P}_{\Sigma}\boldsymbol{\alpha}_{\Sigma} / \mathbf{P}_{\widetilde{\Sigma}}\boldsymbol{\alpha}_{\widetilde{\Sigma}} = \boldsymbol{\alpha}_{\Sigma} / \boldsymbol{\alpha}_{\widetilde{\Sigma}}, \qquad (4)$$

where α_{Σ} and α_{Σ}^{\sim} are the antisymmetry coefficients of the decays. As has been shown in reference 1, measurement of the ratio $\alpha_{\Sigma} / \alpha_{\Sigma}^{\sim}$ is of great significance for testing the conservation laws associated with time reversal T and charge conjugation C; this ratio differs from unity only if T and C are not conserved in the decay.

Let us go on to the consideration of the two cases

$$\widetilde{p} + p (\widetilde{n} + n) \to Y_1 + \widetilde{Y}_2 + m\pi^+ + n\pi^- + l\pi^0 \qquad (5)$$
$$\to \widetilde{Y}_1 + Y_2 + n\pi^+ + m\pi^- + l\pi^0. \qquad (6)$$

The amplitudes for the reactions (5) and (6) are expressed in the form

$$f_{1} (\mathbf{p}_{i}, \mathbf{p}_{f}, \mathbf{p}_{\alpha}^{+}, \mathbf{p}_{\beta}^{-}, \mathbf{p}_{\gamma}^{0}, \sigma_{p}, \sigma_{a}), \quad \alpha = 1, 2, ..., m, \beta = 1, ..., n, f_{2} (\mathbf{p}_{i}, \mathbf{p}_{f}, \mathbf{p}_{\beta}^{+}, \mathbf{p}_{\gamma}^{-}, \mathbf{p}_{\gamma}^{0}, \sigma_{p}, \sigma_{a}), \quad \gamma = 1, ..., l,$$
(7)

where $\mathbf{p}^{\pm,0}$ are the momenta of $\pi^{\pm,0}$ mesons. From invariance with respect to C it follows that

$$f_{2}(\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{\beta}^{+}, \mathbf{p}_{\alpha}^{-}, \mathbf{p}_{\gamma}^{0}, \sigma_{p}, \sigma_{a})$$
$$= f_{1}(-\mathbf{p}_{i}, -\mathbf{p}_{j}^{+}, \mathbf{p}_{\alpha}^{-}, \mathbf{p}_{\beta}^{+}, \mathbf{p}_{\gamma}^{0}, \sigma_{a}, \sigma_{p}).$$
(8)

Using the relation (8), we get not only equality of the total cross-sections and the angular distributions of these two processes (σ_1 and σ_2), but also equality of the polarization vectors of the hyperons and antihyperons in the final state (P_Y and P_Y^{\sim}). When the initial state is unpolarized we have

$$\begin{split} & \sigma_1(\mathbf{p}_i, \mathbf{p}_f, \mathbf{p}_{\alpha}^+, \mathbf{p}_{\beta}^-, \mathbf{p}_{\gamma}^0) = \sigma_2(-\mathbf{p}_i, -\mathbf{p}_f, \mathbf{p}_{\beta}^-, \mathbf{p}_{\alpha}^+, \mathbf{p}_{\gamma}^0), \\ & \mathbf{P}_{Y_1}(\mathbf{p}_i, \mathbf{p}_f, \mathbf{p}_{\alpha}^+, \mathbf{p}_{\beta}^-, \mathbf{p}_{\gamma}^0) = \mathbf{P}_{\widetilde{Y}_1}(-\mathbf{p}_i, -\mathbf{p}_f, \mathbf{p}_{\beta}^-, \mathbf{p}_{\alpha}^+, \mathbf{p}_{\gamma}^0), \\ & \mathbf{P}_{\widetilde{Y}_2}(\mathbf{p}_i, \mathbf{p}_f, \mathbf{p}_{\alpha}^+, \mathbf{p}_{\beta}^-, \mathbf{p}_{\gamma}^0) = \mathbf{P}_{Y_2}(-\mathbf{p}_i, -\mathbf{p}_f, \mathbf{p}_{\beta}^-, \mathbf{p}_{\alpha}^+, \mathbf{p}_{\gamma}^0). \end{split}$$
Analogous relations exist also for reactions in

which K mesons and nucleons are produced.

There are also a number of selection rules for reactions of the types

$$\widetilde{n} + p \, (\widetilde{p} + n) \to Y_1 + \widetilde{Y}_2 + m\pi^+ + n\pi^- + l\pi^0 \to \widetilde{Y}'_1 + Y'_2 + m\pi^+ + n\pi^- + l\pi^0.$$
 (10)

where \tilde{Y}_1 and Y_2 are obtained from Y_1 and \tilde{Y}_2 by means of the operator G, which is the product of the charge-conjugation operator and a rotation through the angle π around the x axis of the isobaric space.² For example

$$\widetilde{\Sigma}^{-} = G\Sigma^{+}, \ \widetilde{\Sigma}^{0} = G\Sigma^{0}, \ \widetilde{\Sigma}^{+} = G\Sigma^{-},$$
$$\widetilde{\Lambda}^{0} = G\Lambda^{0}, \ \widetilde{n} = Gp, \ \pi^{\pm,0} = G\pi^{\pm,0}$$

and so on. We denote the respective amplitudes of the reactions (10) by

$$f_1(\mathbf{p}_i, \, \mathbf{p}_f, \, \mathbf{p}_{\alpha}^+, \, \mathbf{p}_{\beta}^-, \, \mathbf{p}_{\gamma}^0, \, \sigma_p, \, \sigma_a) \, \text{and} \, f_2(\mathbf{p}_i, \, \mathbf{p}_f, \, \mathbf{p}_{\alpha}^+, \, \mathbf{p}_{\beta}^-, \, \mathbf{p}_{\gamma}^0, \, \sigma_p, \, \sigma_a)$$

From invariance with respect to G it follows that

$$f_{1}(\mathbf{p}_{i}, \mathbf{p}_{f}, \mathbf{p}_{\alpha}^{+}, \mathbf{p}_{\beta}^{-}, \mathbf{p}_{\gamma}^{0}, \sigma_{p}, \sigma_{a})$$
$$= \eta f_{2}(-\mathbf{p}_{i}, -\mathbf{p}_{f}, \mathbf{p}_{\alpha}^{+}, \mathbf{p}_{\beta}^{-}, \mathbf{p}_{\gamma}^{0}, \sigma_{a}, \sigma_{p}), \qquad (11)$$

where $\eta = \pm 1$ is a phase factor.

It is easy to show from Eq. (11) that for an unpolarized initial state

$$\sigma_1(\mathbf{p}_i, \, \mathbf{p}_f, \, \mathbf{p}_{\alpha}^+, \, \mathbf{p}_{\beta}^-, \, \mathbf{p}_{\gamma}^0) = \sigma_2(-\mathbf{p}_i, \, -\mathbf{p}_f, \, \mathbf{p}_{\alpha}^+, \, \mathbf{p}_{\beta}^-, \, \mathbf{p}_{\gamma}^0),$$

$$\begin{split} \mathbf{P}_{Y_{1}}(\mathbf{p}_{i}, \, \mathbf{p}_{f}, \, \mathbf{p}_{\alpha}^{+}, \, \mathbf{p}_{\beta}^{-}, \, \mathbf{p}_{\gamma}^{0}) &= \mathbf{P}_{\widetilde{Y}_{1}'}(-\mathbf{p}_{i}, \, -\mathbf{p}_{f}, \, \mathbf{p}_{\alpha}^{+}, \, \mathbf{p}_{\beta}^{-}, \, \mathbf{p}_{\gamma}^{0}), \\ \mathbf{P}_{\widetilde{Y}_{2}}(\mathbf{p}_{i}, \, \mathbf{p}_{f}, \, \mathbf{p}_{\alpha}^{+}, \, \mathbf{p}_{\beta}^{-}, \, \mathbf{p}_{\gamma}^{0}) &= \mathbf{P}_{Y_{2}'}(-\mathbf{p}_{i}, \, -\mathbf{p}_{f}, \, \mathbf{p}_{\alpha}^{+}, \, \mathbf{p}_{\beta}^{-}, \, \mathbf{p}_{\gamma}^{0}). \end{split}$$
(12)

¹ Chou Kuang-Chao, Nuclear Phys. (in press). ² T. D. Lee and C. N. Yang, Nuovo cimento **3**, 749 (1956).

Translated by W. H. Furry 176