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A formulation of thermodynamic perturbation theory is proposed which makes it possible to 
make full use of quantum-field-theory methods in quantum statistics at finite temperatures. 
The method is a generalization of the Matsubara technique and is based on the expansion of 
the Green's functions in Fourier series in the "imaginary time" variable. The technique so 
obtained differs from the usual diagram technique for T = 0 by the replacement of integra­
tion over the frequencies by summation over discrete values of the imaginary frequency. 
The analytic properties of the Fourier components of the Green's functions are examined. 
It is shown that owing to the possibility of analytic continuation a knowledge of the corre­
sponding equilibrium Green's functions is sufficient for the solution of various kinetic and 
nonstationary processes. 

1. INTRODUCTION 

THE methods of quantum field theory have recently 
been successfully applied to problems of statistics .1- 4 

The application is based on the fact that the appa­
ratus of quantum field theory is developed through 
the wide use of the "diagram technique," which pro­
vides a very intuitive representation of the struc­
ture and character of any approximation. Earlier 
methods of quantum statistics, which started from 
ideal-gas approximations, could scarcely take the 
interaction between the particles into account be­
yond one or two approximations because of the 
complexity of the older quantum perturbation the­
ory. This is utterly inadequate for the actual 
many-body problem; to obtain any approximation 
of physical significance it is necessary to sum 
over an infinite set of different terms of the per­
turbation-theory series. The diagram technique 
is extraordinarily useful in such problems, since 
it formulates simple rules by which any term of 
the perturbation theory can be written down. 

The basis of the quantum-field-theory methods 
is the calculation of the so-called Green's function 
of a particle, which for the case of temperatures 
different from zero is defined as 

G(I,2)= 

- iSp {exp [(Q + p.N -H)jT]· T (f(x1 ) ~+ (x2 ))} , (1) 

where 'ij:, lj:+ are second-quantization operators in 
the Heisenberg representation. Knowledge of the 
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Green's function makes it possible easily to calcu­
late all the thermodynamic quantities of the system. 
For example, the particle number density as a func­
tion of the chemical potential iJ. and the tempera­
ture is connected with G by the relation 

N (fL, T) = + iG (x, x) I t'=t+o 

(the minus sign is for Fermi statistics, the plus 
for Bose statistics). 

At the absolute zero of temperature the Green's 
function is calculated by going over to the so-called 
"interaction representation." In this representa­
tion G ( 1, 2) has the form 

G (1,2) =- i <T (<h rh+ S)) 1 (S;, (1a) 

where < ... > means the average over the ground 
state of the system, and S is the well known S 
matrix of the quantum field theory. Expanding S 
in powers of the interaction constant, we obtain the 
usual Feynman diagram technique. 

For temperatures other than zero it is already 
impossible to represent G in a form like Eq. (1a), 
and consequently it is impossible to calculate G 
by means of the diagram technique. 

Several years ago Matsubara4 proposed a new 
formulation of the thermodynamic perturbation 
theory which is almost completely analogous to 
the diagram technique of field theory. The present 
paper is devoted to the description of a technique 
which is a further development of the Matsubara 
method. This technique makes it possible to cal­
culate the thermodynamic quantities at finite tern-
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peratures with almost the same simplicity with 
which this is done for T = 0. It will further be 
shown that by establishing the connection of the 
quantities that figure in this technique with the 
corresponding quantities in the usual technique 
one can determine all the kinetic characteristics 
of the system.* 

2. THE MATSUBARA METHOD 

The basic idea of the Matsubara method is the 
passage from the time t to a certain imaginary 
"time" T. We note that the ordinary Green's func­
tion G ( 1, 2) can be represented in the form 

·s { [n + .,.N- Prj -1 p exp T 

x.exp [ !_j__H--;: p.N) (t1- tz) l ~ (ri) 
0(1,2)= 

X ex{- i (H--.;, p.N) (t 1 - t 2) }+ (r2)}, f1 > tz, 

I ·s { r f!+l"N-H] --r 1 p exp --T--

[ i (if- I"N) '] I+ xexp - n. ' (t1- tz) r.p (rz) 

X exp[ i (if--;: i"N) (fl- fz) J ~ (r1)}' t1 < fz' 

(2) 

where 1/J, If!+ are the second-quantization opera­
tors in the Schrodinger representation. 

In the Matsubara method one introduces a tem­
perature-dependent Green's function ®, which is 
obtained from G by the replacement t- -iTti: 

C\)(1,2)= 

S f rfl -l- vN- fr] -,plexpl T 

xexp [ui- tLN) h- 'z) J ~ (r1) 

X exp[- (H- :1.N) (c1- '2) J~+ (rz)} ,,1 >72, 

I s f r_n--'-- \"N- Prj --r p \ exp [--T--

X exp [- (H- r;N) h- cz) J ~+ (r2) 

X exp[(H-:LN)(-r1--r2)J~(r1)}, -r1<-rz. 

(3) 

Matsubara showed that in the formula (3) one 
can go over to a sort of "interaction representa-

*We have learned that similar results have been obtained 
by E. S. Fradkin (J. Exptl. Theoret. Phys. (U.S.S.R.), in 
press). 

tion". Namely, let us represent the statistical 
matrix p = exp { (J..tN- H)/T} in the form 

exp [!"N;: Fr J = exp [vN-:;: fro J · S' (1/T) (4) 

and introduce the new operators If ( r, T), If! ( r, T) 
in the "interaction representation" by the formulas 

~(r, 1:)=exp [,(ffo-r;N)] ~(r) exp[--r(Ho-:.LN)1, 

'4(r, -r) = exp [,(fl0 -:.LN)] ~+(r) exp [ ---:(H0 -r;N)]. (5) 

Then, using the formal resemblance of the equa­
tion satisfied by the matrix S ( 1/T ), - oS ( T)/oT = 
H ( T) S ( T), with the Schrodinger equation, we write 
S ( 1/T), in complete analogy with the usual S ma­
trix, in the form 

{ 
1/T , } 

S (1/T) = T~ exp - ~ Hint (1:) d1: , 

where T 7 is the time-ordering operator with re­
spect to the imaginary "time" T. The interaction 
Hamiltonian Hint ( T) now depends on the opera­
tors If! ( r, T) and If ( r, T) in the same way that 
it formerly depended on If! ( r) and If!+ ( r). 

Now, using the possibility of cyclic permutation 
of the operators under the sign Sp in Eq. (2), we 
can show that @' can be written in a form analo­
gous to that us.ed in the field theory: 

@(I 2 ) = _ Sp {exp [(p.N -Ho)/T]T, [tji;~ 2S (1/T)]} (6 ) 
' Sp {exp [(p.N- H0) ;T]S (1/T)} ' 

It is not hard to see that for the potential !.1 we 
can write the following formula: 

The expressions (6) and (6a) have the forms of the 
corresponding formulas of field theory: 

if we understand the averaging symbol < ... > 
to mean the operation 

Sp {exp [ i"N:; lio J ... }/ Sp {exp [ i"N-:;: fro]}. 
Matsubara showed that for such averages of 

T -products of several If! -operators there exists 
a "Wick's theorem," according to which the aver­
age in question breaks up into a sum of products 
of averages by pairs of operators: 
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Of course this does not apply to Bose systems be­
low the point of the Bose condensation. Similarly, 
the Wick's theorem is not applicable to Fermi sys­
tems in which superconductivity exists. For the 
construction of a thermodynamic perturbation 
theory in this range of temperatures one must use 
in the first case an obvious generalization of some 
work of Belyaev, 5 and in the second case, work of 
Gor'kov.6 

Expanding the expression for S ( 1/T) appearing 
in Eq. (7) in a series of powers of the interaction 
Hamiltonian and using Wick's theorem, we get the 
usual diagram technique, in which each line corre­
sponds to a zeroth -order Green's function ®0 ( 1, 2). 
For example, in the case of the four-fermion inter­
action with 

A g - -
Hint = 2 A ex~; y8~cx (x) ~~ (x) ~Y (x) ~8 (x), 

where x = { r, T } and Aa(3 ;yo is some function 
bf the spin indices antisymmetric in 01{3 and yo, 

a) .T • e <:::;0:> lJ !I 

FIG. 1 

we find for the second-approximation correction 
to the Green's function, corresponding to the dia­
gram of Fig. 1a 

I/T I/T 

2g2A1.1mAP"""' ~ d-r:~ ~ d-r:11 ~ d~ ~ d1j®~~.(x- e) 
0 0 

x ®~p(e -"tJl ®~" (e -7j)®~~ ('YJ- el ®~~ ('YJ- y). (s) 

In the case of the electron-phonon interaction1•4 

Hint = gf~rp, 

the first correction to the electron Green's func­
tion, corresponding to the diagram of Fig. 2a, has 

p,,w, 

b)~ 
P-'p---;;-w p,w ,, 7 

FIG. 2 

the form (the dotted line indicates the phonon 
Green's function ll0 =- <TT(cp1cp 2)>, which is 
the analogue of the ordinary D function of the 
phonon): 

I/T I/T 

- g 2 ~ d-r:~ ~ d-r:11 ~ d; ~ d1j@ 0 

0 0 

The actual calculation of expressions of types (8), 
(9) and of the more complicated expressions in the 

higher approximations is, however, very laborious 
in the Matsubara technique. The point is that the 
success of field-theory methods in statistics for 
T = 0 is due to the highly automatic nature of the 
calculations, which is achieved by the use of Fou­
rier expansions of all the quantities with respect 
to all four coordinates. It is obvious that in the 
Matsubara method the automatic feature is lack­
ing because of the finiteness of the range of T, 
from zero to 1/T. Indeed in the coordinate rep­
resentations (as regards T) ®0 (and ®) is a 
discontinuous function of the variable T; there­
fore in fact all the integrals over T break up into 
integrals over a very large number of regions. The 
number of such regions obviously increases rapidly 
with increase of the order of the approximation. 

3. THE EXPANSION IN FOURIER SERIES 

The Matsubara technique can be decidedly im­
proved by the exploitation of certain general prop­
erties of the thermodynamic Qreen' s functions. 

As we have shown, by Eq. (3) the Green's func­
tion ® ( 1, 2) is a function of the difference T1 - T2, 

specified in the interval from - 1/T to 1/T. It is 
therefore expedient to continue it periodically and 
expand it in Fourier series in the variable T: * 

@ (-r:) = T ~ e-iwnT@ (wn), (J)n = -;;Tn, 
n 

I/T 

®((J)n)= ~ ~ ei"'n"@(-r:)d-r:. (10) 
-I/T 

One major property of the function ® is essen­
tial for the transformation of the perturbation­
theory series. It follows from Eq. (3) that the func­
tion ® for negative values of T is simply related 
to the ® for T > 0, namely we have the relation 

(11) 

where the minus sign is for Fermi statistics and 
the plus for Bose statistics. The formula (11) is 
easily derived if we use the fact that one may cy­
clically permute the operators under the sign of 
the trace. The relation (11) is of course also valid 
for the free Green's functions. For the functions 
as periodically continued this relation is valid for 
any value of T. 

*Recently I. M. Khalatnikov called our attention to the 
fact that the idea of expanding the temperature-dependent 
Green's functions of Matsubara in Fourier series is also 
contained in a paper by Ezawa, Tomozawa, and Umezawa. 9 

These writers, however, being interested only in the ap­
plication of the Matsurbara method to the problem of 
multiple production, confined themselves to the case of zero 
chemical potention. Meanwhile the construction of the 
technique is nontrivial just in the case p. -/= 0. 
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If we note further that at each vertex of a Feyn­
man diagram an even number of fermion lines come 
together, it is easy to see that all the integrals 

1/T J ... dT in formulas of the type of Eqs. (8) and 

o 1/T 
(9) can be replaced by ! J ... dT. When this is 

-1/T 
done the Fourier transformation (10) is easily car­
ried out in all terms of the perturbation-theory 
series. 

The relation (11) also has the consequence that 
in the Fourier expansion of a fermion Green's func­
tion only the components with wn = 7TT ( 2n + 1) are 
different from zero, and the expansion of a boson 
Green's function has only components with Wn = 
'ITT • 2n. We shall present the expressions for the 
zeroth-order Green's functions Cli0 ( Wn, p) (here 
the Fourier integral transformation for the space 
coordinates has also been carried out). 

Fermions: 

Clio (wn, p) = [iwn + IJ.- 8 (p)p, Wn = (2n + 1) rrT 

(here E ( p) = p2 /2m, and fJ. is the chemical po­
tential); bosons above the Bose condensation point: 

Cli0 (wn, p) = [iwn +fl.- e: (p)rt, Wn = 2nrrT; 

phonons: 

!l0 (wn, k) = - w2 (k) / [w2 (k) + w~], Wn = 2nrrT 

( w ( k) is the energy of a phonon). 
Carrying out the Fourier transformation in all 

the terms of the expansion of the Green's function 
in the perturbation-theory series, we can verify 
that the technique so obtained is entirely equivalent 
to the diagram technique in the momentum space at 
absolute zero. To each line of a diagram there cor­
responds a zeroth -order Green's function Cli0 ( Wn, p), 
and to each vertex a o function expressing the con­
servation laws 1:p = 0, 1:wn = 0. The only differ­
ence is that in our case we have instead of an inte­
gration over frequency a summation over discrete 
imaginary "frequencies" iwn. For example, the 
formula (8) for the correction to the electron 
Green's function from the four-fermion interaction 
is transformed into the form 

Aa1m An:.<~ ~~:~62 ~ ~ d 3p1d3p2 [iwl +fl.- e: (Pl)P 
(r)l(t)2 

X [iw2 + p.- 8 (p2)r1 [i (wl + W2- w) + p.- e: (Pl + P2- P)C 

X [iw + p. ~ e: (p)r2, 

corresponding to the diagram of Fig. lb. 
The expression (9) takes the form 

o® (w, p) = (;~3 {~ ~ d3p' [iw' + I.L- e: (p')rl w2 (p- p') 

x [w2 (p- p') + (w-w')2P} [iw + p.- e: (P)r2, 

which corresponds to the diagram of Fig. 2b. 
On passage to the absolute zero of temperature, 

large values of n play the main part in the sums. 
Therefore in the perturbation-theory formulas we 
must make the replacement 

00 

T 2J ~ ;, ~ .. . dw. 
wn -oo 

Furthermore, it is obvious that when one replaces 
all frequencies by imaginary values, w - - iw', 
integrals with respect to dw from - oo to + oo 

of products of several factors of the form 

(iw + p. -- e: (p)f1 

go over into integrals of products of factors 

(12) 

which corresponds to a rotation of the path of inte­
gration to real w. In the case of Fermi Green's 
functions E (p) - fJ. can be either positive or nega­
tive. Therefore after the indicated transformation 
of the contour of integration the path around the 
poles is chosen as shown in Fig. 3a. For Bose 
particles the chemical potential fJ. of an ideal gas 

a)~ b)~ 
FIG. 3 

is always negative; therefore the poles in Eq. (11) 
lie in the lower half-plane of w' (Fig. 3b). Con­
versely, it can be seen from this how from the well 
known rules of the diagram technique for T = 0 
one can write down the corresponding term of the 
perturbation theory for T ~ 0. To do this we first 
make the replacement w' - iwn ( n = (2m + 1) 
for Fermi particles and n = 2m for Bose systems) 
in the corresponding expressions for T = 0, and 
must then go from integration over the frequencies 
to summation: 

+oo 

~ dw~ -21tTi ~· 
-oo "'n 

Everything said up to now has referred to cal­
Cl.llations by perturbation theory. In quite a number 
of problems, however, calculations by perturbation 
theory have been found to be inadequate. For these 
purposes it is essential to know certain exact equa­
tions connecting the quantities with each other. One 
such relation is the Dyson equation. As is well 



640 ABRIKOSOV, GOR'KOV, and DZYALOSHINSKII 

known, in field theory one can write an equation 
connecting the Green's function with the so-called 
vertex part (the Dyson equation). The analogue 
of this equation can of course be obtained in the 
technique proposed here. For the case of the four­
fermion interaction it is shown schematically, in 
the language of the diagrams, in Fig. 4. Here heavy 

-=-+~0-+-e-
FIG. 4 

lines mean the complete Green's function @5, and 
the rhomb means the complete vertex part, i.e., 
the sum of all connected diagrams having four ex­
ternal fermion lines. In the momentum representa­
tion the Dyson equation corresponding to this dia­
gram has the form: 

@-r ( ) - @)o-r( )- 2gT ~ \ d3 @ ( ' ')A a~ W, P - .a~ W, P (2rrj3 LJ J P vr.o. W ,p af-(;v~ 
w' 

- (~:~: A,"A,f-lv ~ ~ d3prd3p2@f-lT (wr,Pr) ®vp (w2, P2) 
(I)JW2 

X ®x"A (wr + W2- w; P1+ P2-p) 

X :tTP,><~ (wl> p; W2,p2; w1 + w2 -w, p1 +p2-p;w,p). 

Here :t is the complete vertex part already 
mentioned. It is connected with the Fourier com­
ponents of the two-particle Green's function 

®a~,ys (xv x2; Xa, X4) = <T (~, (xr) ~~ (x2)tpy (x3)~s (x4)S)) f<S> 

by the relation 

= (2;)" {(2;)'[ ®as (wr, Pr)®~y(w2, P2) 

X ~w,w, o (Pr - P4) - @,y( Wl> Pr) ®Bs ( W2, P2) Ow,w, o (Pr -- P3)] 

1 -2 ®a"A(wl,Pr) ®~f-l (w2,P2) :tAf-l,vT(wr.Pr; w2,p2; W3,p3; W4,p4) 

X ®vy(Wa,Pa)®Ts (p4,(u4)}ow,+c.J1-w,-"'• o (Pr + P2- Pa- pq). 

We shall not write out the analogous Dyson equa­
tion for the case of the electron-phonon interaction. 

Knowing the thermodynamic Green's function ® 
one can find thermodynamic functions of the system. 
For this purpose one can use, for example, the fol­
lowing simple relation 

Here n is a coefficient depending on the form of 
the interaction. For the interaction with phonons 
n = 1; for the four-fermion interaction n = ! . 

4. THE ANALYTICAL PROPERTIES OF THE 
GREEN'S FUNCTIONS AND THE TRANSITION 
TO TIME-DEPENDENT QUANTITIES 

As has already been mentioned, a knowledge of 
the Green's function is sufficient for the determi­
nation of the thermodynamic characteristics of a 
system. But for the study of various kinetic phe­
nomena, such as scattering or absorption of light 
or sound, diffusion, and so on, one must know the 
ordinary time-dependent functions. We shall show 
how, knowing the thermodynamic one-p:i.rticle func­
tion ® ( Wn, p), one can find the time-dependent 
G(w,p). 

Beginning with the coordinate space, and com­
paring Eqs. (2) and (3), we see that in the range of 
T from - 1/T to 1/T the transition from ® to 
G is accomplished by replacing T by it. It is 
much more interesting, however, to find the con­
nection between the Fourier components G ( w, p ) 
and ® ( wn, p ) . 

As has been shown by Landau, 7 when the func­
tion G ( w, p) is expanded as a Fourier integral, 
its Fourier transform is a nonanalytic function of 
w. Its real and imaginary parts are connected by 
the relation 

+oo 

G' ( ) = _1 f th~ G" (x, p) d w, p "' CO 2T X_"' X 
-00 

for the Fermi statistics, and the relation 
+oo 

a· (w, Pl = ~f tanh ~ a" (x. p) dx 
n 2T x-w 

-00 

for Bose statistics. 
It can be shown that the Fourier transform of 

the so-called retarded Green's function GR ( r 1 - r 2, 

t1 -t2), 

GR (1,2) = X[~ (xr)4'+ (x2) + cji+ (x2)f(xr) J}, tr>t2, 

0, tr < t2. 

is analytic in the upper half-plane. Here the plus 
sign is for Fermi st;ltistics, the minus for Bose 
statistics. It turns out that the Fourier transform 
GR ( w, p) of this function is simply related to 
G ( w, p). Namely, their real parts are identical, 
and 

G"R (w, p) = coth (wf2T) G" (w, p) 

for the Fermi statistics, and 

G"R (w, p) =tanh (wj2T) G" (w, p) 
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for the Bose statistics. For GR ( w, p) we can given GR ( w) is solved by Eq. (16) and the rela-
write an expansion of the type used by Lehmann8 tion 

+oo 
QR (w p)= (' P (x, p). dx (13) 

' ) X-W-10 ' 
-00 

where 

'0 [ Q + p.N n - En ] p(w,p)=-(2r.)3 LJ exp T 
n,m 

X\ ~mn(0)[ 2 ( 1 ± exp [- "'~n ]) 

X o(P-Pmn)o(w-Wmn)· (14) 

Here Wmn = Em- En- JJ-, Pmn = Pm- Pn; En, Pn 
are the energy and momentum in the n-th state of 
the system. It can be sei:m from Eq. (14) that 
p ( w, p) is a real function, for which the integral 

+oo J p(w, p)dw is finite. 
-oo 

Let us· write the analogous Lehmann expansion 
for G ( Wn, p). By the use of Eq. (6) it is easy to 
show, by a method analogous to that of reference 7, 
that 

-00 

p (x) dx 
X- iwn 

Comparing Eqs. (13) and (15), we see that 

®(wn)=GR(iwn), Wn>O. 

(15) 

(16) 

On the other hand, let us use the integral (15), re­
garded formally as a function of the complex vari­
able iwn, to determine a function ® ( w) analytic 
in the upper half-plane. In virtue of Eq. (16) and 
the well known theorem of the theory of functions 
of a complex variable regarding the analytic con­
tinuation of a function given at an infinite set of 
discrete points possessing a point of concentration, 
we find from the above that GR is, apart from a 
constant factor, the analytic continuation of the 
function @ (- iwn) into the upper half-plane. Namely, 
we have 

QR(w)=@(-iw). (17) 

The converse problem of finding @ ( wn) from a 

(16a) 

which follows from Eq. (15). 
Relations of the types (16) and (17) can in prin­

ciple be obtained also for the vertex parts r and 
st. The general relations will, however, be more 
complicated. For physical applications one ordi­
narily needs not r and st themselves, but the 
correlation functions, i.e., certain integrals of 
these quantities, and the practical procedure is to 
establish the connections between them separately 
for each concrete case. 

In conclusion we express our gratitude to Acad­
emician L. D. Landau and L. P. Pitaevskil' for help­
ful discussions of the results of this work. 
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