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The nonlinear field described by the equation ( 0- A.cp2 ) cp = 0 is considered. Starting from 
the exact wave-type solution of the field equation, the spectral analysis of the energy of the 
nonlinear field is obtained. The mass spectrum derived has the form M~n) = ( 2n + 1 ) M~o), 
n = 0, 1, 2,.... The exact radially symmetric solution of the field equation is found. A 
general method of integrating the nonlinear field of Dirac is given, and it is shown that in 
some cases it is possible to go over to a two-component spinor equation of the second 
order. 

1. THEORY OF THE NONLINEAR FIELD 
( 0 - A.cp2 ) <P = 0 

WE considered the nonlinear field ( 0 - A.cp2 ) <P 
= 0 in previous papers,1•2 where a wave solution 
of the field equation was found and it was shown 
that a nonlinear state could appear as a superposi
tion of linear states with the integral frequencies 
( 2n + 1 ), n = 0, 1, 2,.... Recently Heisenberg 
has obtained by different means the mass spectrum 
of particles, and in particular that of mesons, in 
a nonlinear theory.3•4 This spectrum obeys only 
approximately the ( 2n + 1) rule; but, as Heisen
berg shows, it has the property that the ratio 
M~n> /M~0 > is almost independent of the nonlinear
ity parameter, as in the case of the ( 2n + 1) rule. 
In connection with this, the present paper gives a 
more detailed derivation of the ( 2n + 1) rule for 
mass spectra by means of the spectral analysis 
of the energy of the nonlinear field. 

(a) Spectral Decomposition of the Energy of the 
Nonlinear Field 

The Lagrangian of our nonlinear field has the 
form 

C=ft=i, (1.1) 

where, for the sake of generality, the term k~cp2 

Is included. 
From Eq. (1.1) we find by the usual methods 

expressions for the energy and momentum and 
also obtain the field equation · 

H f \" { 2 2 I k 2 2 + 1 \ 4} (d ' = 2V .) Cf'n - Cf'4 1 o tp 2 "y X), (1.2) 

G =- ~ ~ Cf'4(Vcp) (dx), 

- cp,, + ko2 cp + )..c:p3 = 0. 

(1.3) 

(1.4) 

In reference 2, the time-averaged energy and 
momentum densities of the field were calculated, 
starting from an exact wave-type solution 

cp = cp0 cn(a +C), a= k,x,, k,(kn, k4 = iw), 

- k,2 =- k2 + w2 = ko2 + Atpo2, 

k12 = Acpo2/2 (ko2 + Aj002); (1.5) 
where <Po and C are arbitrary constants and k1 
is the modulus of an elliptic function. 

The final results of the calculations are 

H = a (k2 + K02)/w, G = ak, a= cp02 wl/2, 

Ko2 = 4-(ko2 + }Atpo2), 

l = {{2- (1- k12) k~2(1 _ ~~~:m. (1.6) 

From this, in particular, it follows when k = 0 
that 

(1.7) 

and, as we see, in the case where ko = 0 the quan
tity 

(1.8) 

corresponds to the square of the mass in the ordi
nary case. Now, setting the energy of the field in 
(1. 7) equal to the meson mass k0, with ko = 0, 
we get 

(1.9) 

We then examine the energy spectrum of the non
linear field. To do this-, we write the solution (1.5) 
in the form ( C = 0 ) 
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00 

9/9o = 2; an cos an, On= (2n + 1) B ("-)a= k~n) xfJ., 

B ("-) = Tt/2K (k1), an = 1ejk1K (k1) ch Pn, 

Pn = (2n + 1) po, Po = 1tK'(kl)/2K (k1), (1.10) 

where k1 is the modulus of the elliptic function 
and K ( k1 ) is the elliptical integral of the first 
kind. K'(kt) == K(kl), ki+k1.2 == 1. 

From (1.4) and (1.10) we find 
co 

"-'fN9o = ~ bn COS an, (1.11) 
n=o 

where 
bn = - (k02 + k~n)') 

= - {k02 - (ko2 + "-902) (B ("-) (2n + 1))2} an. (1.12) 

Putting (1.10) - (1.12) into (1.2) and (1.3), we get 
00 co 

H = 9o2 ~ H n, G = 9o2 ~ On , (1.13) 
n=O n=O 

where 

Hn = {-an2 w(n)'{1 + (k02 + kfJ.<nl')/4w<nJ'}, 

0 - _!_ a 2 w(n) k<n) n- 2 n • (1.14) 

We introduce the new amplitude Nn, defined 
by the formula 

(1.15) 

Then we have 
H n = N n w<n) {1 + (k02 + kfJ.(n)')/4w(n)'}, 

On = N n k(n) . (1.16) 

From this, for the case k == 0, ko == 0, we find 

Hn = {Nnw(n), Gn = 0. (1.17) 

Further, according to (1.5) and (1.10), we have 

k12 = {, K' (k1) = K(kl) = 1.85, 

B("-) = Tt/2·1.85 = 0.84, 

"' 7t y2 1 2.396 
Po= T' an= ----r:8"5 ch [7t (2n + 1)/2) = ch [n (2n + 1)/2] ' 

(2 V2 a0 ) 2 = 7.29, (113 B ("-)/4)2 = 0.355. (1.18) 

Then we get on rearranging 

where 
(n) (0) v- - -M o = (2n + 1) M 0 , K 0 = (2 2 a0) 2 k0 = 7.29 ko , 

(0) v- - -M 0 = ( 3 B ("-)/4)2 k0 = 0.3554 k0 • (1.20) 

The total energy of the field then has the form 
co 

H = 9o2 (Ko/ko) ~ -} (anfao) 2 M;l' (1.21) 
n=O 

Calculating (1. 9), we find 

H = k0 {(Ko/k0) ~0 (an/a0 ) 2 (M;)/k0 ) 2}. (1.22) 

Equating (1.22) and (1. 7) for k0 = 0, we get 
00 00 

(Ko/ko) ~ (anfa0 ) 2 (M~) /k0) 2 = ~ B2 (A) 2] [ (2n + 1) an] 2 

n=o n=o 
co 

_1_ ( "' )4 ~ ( 2n + 1 ) 2 = 1. (1.23) 
- 8 yk1 K (k1) k,'='l• n=o ch (1t (2n + 1)/2) 

The reader can easily convince himself of the 
validity of (1.23). 

The mesonic mass spectrum we have derived 

M(~)jk0 = (2n + 1)·0.36 (1.24) 

is listed below. For comparison, Heisenberg's 
results are also shown 

n 0 2 3 4 5 

From (1.24) 0.36 1.08 1.80 2.52 3.24 3.96 

Heisenberg 0.33 0.'94 1. 74 3.32 

(b) The Radially Symmetric Solution of the Wave 
Equation 

If, for k0 == 0, we examine the solution of (1.4) 
in the form 

~ = ~ (s), s = V xfJ.2 , p. = 1, 2, 3, 4, (1.25) 

the field equation becomes 

d2<Ji. + 1_ d<ji + }.~3 = 0, 
ds2 s ds 

(1.26) 

the solution of which is 

V 2k12 1 [ 1 ] ~ = Aso• (2k12- 1) (s/so) en yr2k12 -1 In (sf so) ' (1.27) 

where s 0 is an arbitrary constant and k1 is the 
modulus of an elliptic function. For k~ = 1, we 
get 

~ = 2 -v ~0. I ( 1 + ( ~ )1 
2. INTEGRATION OF THE NONLINEAR DIRAC 

EQUATION 

In the linear theory, one can go over from the 
Dirac equation for a free field to the Klein-Gordon 
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equation and vice versa. Furthermore, there exists 
a connection between the solutions of the Dirac 
equation and those of the corresponding Klein
Gordon equation: if a solution of the Klein-Gordon 
equation is known, it is then possible to construct 
a solution of the Dirac equation. 

It is shown below that in some sense an analo
gous situation occurs even in the nonlinear theory. 
However, as a rule, this dependence has a more 
complicated nature. 

The nonlin.ear Dirac equation has the following 
general form: 

(2.1) 

where 

'Is= '11 '12 'Ia '14• '111- 'I" +'I" '111- = 21l1J.v . (2.2) 

The functions A('¢, If!) and yJ.J.BJ.J. ('¢, If!) are 
scalars constructed from '¢, 1/J, and the YJ,J. ma
trices in line with invariance requirements. As a 
rule, they have the form 

f(fiJ.(~riJ.~)), riJ. =I, rs. '111-• '111-'15· 

The equation adjoint to (2.1) is 

(2.3) 

~ {(a;axiJ. + BIJ. (~. ~)) '111-- A(~. W = o, (2.4) 

where 

A (4, ~) = '14 AT(~. ~) '14· ~a;axiJ. = a~(axiJ. 

Bn (~, ~) = '14 BnT (~, ~) '14• 

B4 (~. ~) =- '14 B4T (~. ~) '14· (2.5) 

We introduce the operators 

p = '111- (a;axiJ. + BIJ. (~. ~)), 

~ = (a;axiJ. +B.,.(~. ~))riJ., (2.6) 

b =- (mAfAA)'p, f5 =-~ (mAJAA), (2. 7) 

where A.A. is a quantity not dependent on the ma
trices. For example, for A = :\1 ( lflf!) + A.2Y5 ( ¢'Y5¢) 
we would have 

A=)..!(~~)- A2 rs(~ 'Is~). AA =(AI(~~))2 - (1-2 'Is(~ '15 ~)) 2 . 

Then Eqs. (2.1) and (2.4) can be written in the form 

(D-m)~ = 0, ~(l) + m) •= 0. (2.8) 

We introduce the new functions 
1 '• ---" 1 

~=~n(D+m)cp, ~=r.p(-D+m)m. (2.9) 

Then, substituting (2.9) into (2.8), we find 

(Db- m2) cp = o, q; (DD- m2) = o. (2.10) 

As we see, (2.8) and (2.10) have exactly the 

same form with respect to the operator D as in 
the linear case. 

For the transition from the Dirac equation to 
the Klein-Gordon equation to be complete, the func
tions 'iii and If! entering into the nonlinear oper-

"' ~ ators D and D must be expressed in terms of 
cp and cp. Since it is difficult to carry through 
the indicated procedure in the general case, we 
examine a few individual cases 

1. (2.11) 

We then get 

and, correspondingly, 

a'P 1 - - a~ 1 
~ = 'f'- '111-axiJ. J.(H) ' ~ = 'f' + axiJ. 'Ill- :A(~<).) , (2.13) 

From this we find 
- - 1 - -
(~~)=cpcp+ :1-(.j;'<j.) ('t'IJ.'IIJ.r-Cf"'ll-'fiJ.) 

- 1 
-(<:piJ. '111- 'j'y 'f'v) (:A(<). <).))2 ' (2.14) 

that is 
ya_ )..(~cp) Y 2 - A(~IJ. '111-'f'- q;''IIJ.'t'IJ.) Y +).. (~IJ. '111- 'I" cp") = 0, 

Y=)..(~~), 
whose solution gives 

Y=f(~8cp), 

(2 .15) 

(2.16) 

where (} is some operator. The corresponding 
Klein-Gordon equation is 

(2.17) 

In particular, if we look at only wave-type solu
tions, as we did in Sec. 1, we arrive at the results 
of references 2 and 6. There, for this special 
case, the reverse problem is also solved and it is 
shown that the equation ( D- A.cp 2) cp = 0 can be 
"linearized" to yield the equations 

(2.18) 

where 

~=X(s)cp(cr), ~=cp(cr)X(cr), XX=l, 

x ( s) being a .constant spinor; s, the spin coordi
nate; and Cto an arbitrary constant. 

If c1 is given in terms of cp 0, the amplitude 
of (1.5), by c1 =- K2cpV2 where K2 = A.cp~, we get 
for the solution of (2.18) If!= x(s)cp (a), where 
cp (a) is given by (1.5) and x ( s) is a solution of 
the equation (yJ.J.kJ.J.-iK)X(S) = 0. Consequently, 
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the nonlinear field 1/J can be represented as a 
particular combination of the linear states (1.10) 
with the integral frequencies ( 2n + 1). 

It is easy to see that in the given case both (2 .1) 
and (2.17) are invariant with respect to the trans
formations 

(2.19) 

(2.20) 

respectively. According to (2.13), the transforma
tion (2.19) induces (2.20) and inversely. Taking 
this circumstance into account we can, following 
Feynman, choose the solutions 1/J = 1/JI, cp = 'PI· 
satisfying the conditions 

(1 -rs) Cf!I = 0, 1/2 (1 +is) Cf!I = Cflp ~I (1 + 16) = 0, 

1/2~(1-r6)=~I (2.21) 

(1 -"(6) ~I = 0, 1l2 (1 + "(5) ~I= ~I' 

~I (1 + l6) = 0, 1l2 ~I (J -"(6) =~I· (2.22) 

Then from (2.13) we have 'PI= 1/Jr, 'CPI = liJr. How
ever, since ( 1-Ys) ( 1 +ys) = 0, we find 

(~~) = (~I~I) = (~cp) = (~rCflr) = (~r (1 - Ys) 114 (1 + Ys) cp)=O. 

Thus a two-component nonlinear equation is not 
possible in this case.* 

2. Now let us consider the cases 

A (tp, tjl) = m = canst, 

Br" ((j/, cj;) = ~ (fr~tJI), ~=canst. (2.23) 

Then we have 

(2.24) 

and, correspondingly 

(2.25) 

From this we find the equation for ("'ifJY~J.I/!) 

(2.26) 

*It should be noticed that the indicated special solutions 
cpr and lfrr are obtained in a natural manner from (2.13). Indeed, 
if we write the solution of (2.13) in the form cp = clfr, we find 
that 1jJ = (c + c) lfr, where cyp. = Yp. ~; that is, c + c = 1, c = V! 
(1 + ly, ), c = V! (1-ly, ), where l is number. Now, if we require 
that cc = c, we get l = 1. 

where 

~ -
b~,p =- m2 (tpj~ "(, lpCfJ), 

- 1 - -
g, = (cpj,cp) + m ( Cfl~ I~ lvCfl- CfllvY ~cp~) 

1 -
- m• (tp~IIJ.YvYpCflp), (2.27) 

and the Klein-Gordon equation takes the form 

{(a~IJ. +B")(a~" +B11)-cr!J.vH!J.v-m2}cp=O, (2.28) 

where 

cri'V = 112 (y!kyV -yVrlk), H"v = iJBv I iJxiJ.- iJBIJ. I ax,, (2.29) 

BIJ. = {3 (ij)y!J.I/J) = YIJ., the solution of (2.26). It is 
easy to verify that although the operator of (2.28) 
does commute with Ys. nevertheless y5cp is not 
a solution of (2.28). Equation (2.26) is not invari
ant under the transformations (2.19), which implies 
the noninvariance of (2.28) under these transfor
mations. 

The transformation (2.19) leads to that of (2.20) 
[in virtue of (2 .13)], only provided that m - - m, 
just as the invariance of (2.1) relative to (2.20) re
quires the change m-- m. Therefore, if 1/J and 
cp are solutions of (2.1) and (2.28) for + m, 'Ysi/J 
and 'Ys'P are solutions for -m, We therefore can
not get the relations (2.21) and (2.22), and it is im
possible to go over to the two-component spinor 
equation.* 

The problem is greatly simplified when m = 0. 
Then instead of (2.3) and (2.25) one must take 

(2.30) 

and we find 

Y, I~= (9T1J.YvYptp) Y ~YP- (~~ "(11 Yv YpY- 9YplvY~'i'J 

(2.31) 

where 

(2.32) 

The quadratic equation coincides with (2.28) and 

*If we introduce the new functions cp = V2 (1 + y5 ) ctf and 
cp' = (p' V!(1-y,), Eq. (2.28) for cp' remains unchanged, and in 
(2.26) the term "'1/m drops out. This last circumstance Makes 
(2.28) invariant under the transformation cp' -+ y5 cp', (jf-+- (/ y,. 
However, from the point of view of cp this last transformation 
is the identity transformation. 
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(2.29) for m = 0, but now Yv = {3 <lifrvlf!) is a solu
tion of (2.31). It is easily seen from (2.30) that the 
transformation (2.19) leads to (2.20) and that (2.28) 
is invariant under these transformations. In addi
tion, (2.1) is invariant under (2.20); consequently, 
the solutions 1j! = 1/!1 and cp = cpl can be chosen 
with the aid of (2.21) and (2.22). 

Following Feynman, we use the relations 

Cflr = {- ( 1 + y5) t\1 =(~<D), 

cjl = ( ~), <D = ~ (a- b), (2.33) 

where a and b are two-component spinors. We 
then get to the two-component nonlinear spinor 
equations (now ifyf.J.lj! = ifiYJ.J.l/!1 ¢ 0) of the first 
and second orders, respectively.* 

We can consider analogously the cases 

(2.34) 

*Note (added November 5, 1958). After the present work 
had gone to press we learned about an article by Ascoli, in 
which the author considers a first-order two-component non
linear spinor equation, but under more stringent conditions. 
The two-component equation contains all the solutions of the 
fundamental equation; at the same time, as in our case, it 
contains only a part of the solutions we picked out of the 
fundamental four-component equation. 

or 

(2.35) 

Several topics touched upon in this article were 
discussed with Professor D. D. Ivanenko. 
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