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An analytic expression for the Green's function of the resonance radiation diffusion equation 
has been derived for the case of a homogeneous infinite space. The properties of the Green's 
function have been investigated for dispersion and Doppler spectral lines. An analytic expres­
sion has been derived for the mean time required for photon to move as a result of diffusion 
over a distance greater than some prescribed value. In conclusion, the Green's function has 
been determined for the stationary equation and its asymptotic expression is. given in explicit 
form for a dispersion spectral line. 

1. INTRODUCTION 

THE theory of resonance radiation leads to a Fred­
holm integral equation of the second order relative 
to the concentration of the excited atoms. Biber­
man17 formulated this equation for stationary prob­
lems under the following assumptions: (1) all the 
atoms have one resonant level, (2) the diffusion of 
the atoms can be neglected compared with the dif­
fusion of the photons; (3) one can neglect the re­
duction in the number of normal atoms due to ex­
citation or ionization of some of the normal atoms; 
(4) the role of negative absorption is unimportant; 
(5) the mean-free-path time of the photon is small 
compared with the duration of the excited state of 
the atom; (6) the frequency of the photon emitted 
by the atom is independent of the frequency of the 
absorbed quantum within the limits of the given 
spectral line. 

The integral equation of diffusion of resonance 
radiation is first encountered for non-stationary 
problems in the papers of Holstein.2•3 However, 
since he investigated the rate of emission of the 
gases by determining the cessation of their exci­
tation, Holstein was interested only in the first 
eigenvalue of the equation, which he calculated by 
the Ritz method. 

We shall show here that by retaining Biberman's 
assumptions and by considering the diffusion of 
radiation in an infinite homogeneous medium it is 
possible to obtain an analytic expression for the 
Green's function f(r, t) for this problem. 

In this case the function f ( r, t) dV is the prob­
ability of the excited atom staying at the instant t 
in the vicinity of the point r, if at the initial in-
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stant of time ( t = 0) the space contains only one 
excited atom, located at r = 0. The unknown 
Green's functions should satisfy the following 
equation, considered in the papers of Biberman 
and Holstein, 

-(! +cr)f(r,l) 

with the initial condition f ( r, t) = o ( r) when 
t = 0. 

(1.1) 

The following symbols are used in Eq. (1.1): 
T is the average lifetime of the excited state of 
the atom, a is the probability of an extinction 
collision per single excited atom, and v is the 
frequency of the photon. The functions e: v and 
kv characterize the shapes of the emission and 
absorption lights respectively. 

2. SOLUTION OF THE RADIATION DIFFUSION 
EQUATION 

By virtue of the symmetry of the problem, we 
have for a homogeneous unbounded medium, 
f (r, t) = f (r, t ), where r is the modulus of the 
vector r. 

We use the Ambartsamyan transformation.4 

We write Eq. (1.1) in a rectangular system of co­
ordinates ( x, y, z) and integrate it over the two 
variables y and z from - oo to + oo. 

Let us consider the transformation term by 
term. We have 
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00 00 

~~f(Vx~+y2 +z2 ,t)dydz=2r: ~ f(r,t)rdr, 
-oo 1x1 

where r 2 = x2 + y2 + z2. 

We introduce the notation 
00 

A (x, t) = 2r: ~ f (r, t) rdr. 
lxl 

(2.1) 

Differentiating Eq. (2.1) with respect to x we find 

f (x, t) =- (1 I 2r:x) DA (x, t) I ax. (2.2) 

Next we have 

r1 exp [- kv 1 r- r' iJ 
J~ !r-r'\2 dydz=27rEi(kv 1x--x'l)· 

--00 

Here Ei is the exponential integral. 
We thus obtain for the function A (x, t) a one­

dimensional integra-differential equation. 

i)A (x, t) 1 r r k E' 1 I 
-iJ-t - = z:r .\ ~ Ev v 1 (i?v X- x' I) A (x', t) dv dx' 

-00 ll 

(2.3) 

with an initial condition A ( x, t) = 6 ( x) when 
t = 0. We apply the Fourier transformation to 
Eq. (2.3), denoting th.e Fourier transforms with 
the same symbols as the originals, merely chang­
ing the arguments from x to p. We find 

iJA (p, t) V21C C . ( 1 , \ 
-i)-t - = z:r A (p, t) .\ Evkv E1 (kvp) dv- ":t--[ cr) A (p, t). 

() (2.4) 

The initial conditions becomes A ( p, t) = 1/-f27i 
when t = 0. 

By definition 
00 

Ei U<vP) = ,}- ( Ei (kv I X I) eipx dx 
y 27t .\ 

-00 

00 1 
1 ~ ~-· . exp (- kv I xI I y) = ~ e'Px dydx. y 27t y 

-oou 

After integrating first with respect to x and then 
with respect to y we get 

(2.5) 

Solving Eq. (2.4) and using Eq. (2.5) we get 
00 

A (p,t) = V1 __ exp [t ( J_ I sk tan-1 _ke__ d·1- __J __ -cr 1). 
27t \ -rp ~ 'v 'r I 

0 

Using the inverse Fourier and Ambartsamyan 
transformations, we obtain finally 

. e-1(1/~+o) 

f (r, t) = - (27t)2r 

00 x-; { ~ e-ipr[ exp {+ J(p)} - 1 J dp + 2,;/l(r)} , (2.6) 
-00 

where 

We shall henceforth replace the argument x, which 
denotes the distance between two points in space, by 
r. 

Equation (2.6) gives a complete solution of the 
problem for an arbitrary form of the spectral line. 
The first term in (2.6) takes into account the diffu­
sion portion of the solution. The second corresponds 
to the probability of the excited atom. staying at the 
point r = 0 during the entire time t, without ex­
periencing a single act of radiation or extinction. 

We turn now to the limiting case. Let the spec­
tral line be monochromatic. Then 

J (p) =.!!.....tan - 1 L p k • (2.8) 

The Green's function can be calculated further by 
approximate methods. Its asymptotic expression 
for larger values of r can be obtained by expand­
ing J (p) in powers of small p and retaining the 
first two terms. We then obtain 

( 
2 ' 

= (4-::Dt)-'', exp -crt- 4; 1), 
(2.9) 

where 

D = 113-r:k2. 

The diffusion of monochromatic radiation is thus 
analogous in the first approximation to the diffusion 
of particles. This analogy was noted by Compton.6 

3. DIFFUSION OF PHOTONS FOR A DISPERSION 
SPECTRAL LINE 

A dispersion spectral line is defined by the 
functions 

2 1 
Ev := 7tAVc 1 + [2 (v -v0) / AvcJ2 • (3•1) 

Here v0 is the frequency of the center of the spec­
tral line, ~vc is the width of the line, and k0 is 
the coefficient of absorption at the frequency v0• 

If the spectral line is of this form, the integral 
(2. 7) can be calculated explicitly. 5 For an asym­
ptotic expression of the Green's function it is 
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enough to know the behavior of the function J (p) 
for small arguments only. We determine this ex­
pression: 

where w = 2 ( ,; - "o )/ D."c· Since D.llc ~ "o for 
the spectral lines of the atoms, the lower limit of 
integration can be extended to -co. Using the nor­
malization condition of the function E 11 and making 
the following change in the integration variable 

(k0jpp..) / (1 + (1)2) = x; (p >- 0), 

we obtain 

1 - 0 

J(p) = 1 + -~- ~ v p~ ~ 
ko/PI1. 

dxd!J-

(1 + x2 ) V (1 - XP!J-!k0 ) x 

{3.2) 

At small values of p the lower limit of integration 
can be extended to infinity and the second term 
under the radical can be neglected. Then 

(p >- 0). (3.3) 

Inserting {3.3) into {3.6) we get 

-at a 00~ ( I v-2 ) f (r t)- - e -- e-ipr exp -- ___lEI dp. 
, - (27t)2r ar 3"' ko 

-oo 

After making the substitution rp = q2 for the inte­
gration variable and integrating by parts we obtain 
as the final result 

1 a (e-at ) f (r,t) =- 7t•r ar -,- t{J (y) ' (3.4) 

where 

"' 
9 (y) = y ~ e-2uq sin q2dq; y = tj3't V2k0r. (3.5) 

0 

For very large distances it follows from (3.4) 
and (3.5) that 

. 1 I e-at 1 
t(r,t)= -.1 -v--a· 

(47t) ' "' k0r ' (3.6) 

Compared with (3.9), the distribution (3.6) dimin­
ishes slowly at infinity. This is explained by the 
slow character of decrease in the kernel of Eq. 
(1.1), as pointed out by Biberman.1 

The function qJ (y) can be expressed in terms 
of the Fresnel integrals: 7 

:p(y) = v~ y {sinu{}- s (y)] +cos y 2 [}- c (y) ]}, 
(3. 7) 

where 
y 

S (y) =~--:;<~sin t 2dt; 
·2 ( 

C (y) = V2n J cos t2dt. 
0 0 

It is easy to verify that the distribution (3.4), 
like (3.9), satisfies the following normalization con­
dition 

00 

eat ~ f (r, t) 4or:r~dr = 1. (3.8) 

For the subsequent calculations we shall find it 
convenient to use certain integral relations. We 
have 

T 

~A(r1 ,t)dr1 = -}-·-S(y)[1-S(y)]-C(y)[1-C(y)]. 

{3.9) 

Using the properties of the Fresnel integrals, we 
obtain the following asymptotic formulas 

r 

~A (r1 , t)dr1= 2;y• for y~ oo, 

(3.10) 

for y--;. 0. 

Furthermore 
t _oo 

\ A (r t') dt' = 1__ _!...._ (~- .. I~ ( e-2 yq cos q2dq ) , 
.) ' V2r. yr ~2 V rc ) 

() 

1 r r I {3.11) 

~~A (r1 , t') dr1dt' = t ~A (r1 , t) dr 1 + 2r ~A (r, t') dt'. 
0 0 () () 

4. DIFFUSION OF PHOTONS FOR A DOPPLER 
SPECTRAL LINE 

The Doppler spectral line, resulting from the 
thermal motion of atoms with Maxwellian velocity 
distribution, is determined by the functions 

kv = k0 exp{- [2 (v~:o) Vln 2 T}; 
s., =-)_ y' In 2 exP{- [2 (~- vo) Vlil2J} ' 

uVD TC VD 

(4.1) 

where D."D is the Doppler width. 
The integral {2. 7) cannot be calculated in explicit 

form for a Doppler spectral line. For small values 
of the argument p, it is possible to obtain by the 
method indicated above the asymptotic value 

J (p) = 1- y;pf4k0 Vln k0 -In p. (4.2) 

Equations (2.6) and (4.2) lead to the follov.ing 
asymptotic expression for the Green's function 

-at ko 

t. ( t) e a R \ -ipr r, =--:z:it2rar e.)e (4.3) 
0 

( 1 v,:;- P 1 )d xexp -·---- P· 
-r 4 k0 Vln k0- In p 
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For large optical distances kor, formula (4.3) 
can be further simplified to 

(4.4) 

It follows from (4.4), like from (3.6), that the 
photon distribution function f ( r, t ) diminishes 
slowly with increasing distance. 

5. NUMERICAL CHARACTERISTICS OF THE 
DIFFUSION OF PHOTONS 

The principal numerical characteristics of pho­
ton diffusion, like those of any distribution, are the 
mathematical expectation value and the dispersion. 
The mathematical expectation value vanishes be­
cause the function f ( r, t) is even. The dispersion 
"?" provides an estimate of the mean distance cov­
ered by the photon during the time t. 

Let the photons diffuse without a change of fre­
quency and in the absence of extinction (a= 0 ). 
Calculating r 2 with the aid of (2.9), we arrive at 
the Einstein equation r 2 = 6Dt. 

If the spectral lines have Doppler or dispersion 
shapes, the slow decrease in the function f ( r, t) 
at infinity causes the integral that determines r 2 

to diverge, and the foregoing arguments lose their 
meaning. We must forego the definition of the mean 
distance covered by the photon during the time t. 
We can speak, however of the mean time t required 
for the photon to shift more than a specified dis­
tance r. 

Assume that there is no extinction. Then the 
expression 

r 

~ 4-rrrif (r1 , t) dr1 

represents the probability of the photon staying 
within a sphere of radius r. Therefore 

r 

- -~ ~ 4-rrrif (r1 , t) dr1dt (5.1) 

is the probability of the photon leaving this sphere 
within a time dt. Consequently, the average time 
required for the photon to shift a distance greater 
than r is defined as the mathematical expectation 
value of the function {5.1) 

oo r 
- • iJ • 
t =-~t-aT~ 4-r.rif (ri> t) dr1dt. 

{5.2) 

0 

Let us turn now to the dispersion spectral line. 
Integration of expression (5.2) by parts and rela­
tions {3.10) lead to 

oor 

t = ~ ~ 4rrrif (ri> t) dr1dt. {5.3) 
0 0 

Integrating by part once more 
oor 

F=-2r~ A(r,t)dt + 2~ ~A(r1,t)dr1dt. 
0 0 0 

These integrals have been given above. We there­
fore obtain as the final result 

{5.4) 

Formula {5.4), obtained with the aid of an asym­
ptotic expression for the function f ( r, t), does not 
hold for small k0r. In practice it gives correct re­
sults even if k0r is on the order of several units. 

Since we consider the photon to have an infinite 
velocity, the time t owes its existence to the finite 
duration T of the excited state of the atom. Conse­
quently t = nT, where n is the average number of 
photon reradiation events over an optical distance 
greater than r. From this we get 

n = 3 Vrk 0r / r;. 

Holstein2•3 investigated the de-excitation of finite 
volumes of gas after cessation of the excitation of 
the atoms. He considered a planar layer of gas of 
thickness L and a cylindrical volume of radius R. 
For the mean de-excitation times of these volumes 
he obtained (using our symbols) the following ex­
pressions, respectively: 

t = 2.2'"Vk0Lj2; t = 1.6'"Vk0R. (5.5) 

Comparison of (5.5) with {5.4) shows that Hol­
stein's results are close to ours. The difference 
lies only in the numerical factor, which is deter­
mined by the configuration of the scattering space. 

Let us turn now to the Doppler spectral line. 
From (5.2) and (4.3) we find 

( t V1t p 1 ) X exp - --- --z-- - - dpdr 1dt. 
" 1 ko V In k0 -In p 

Interchanging the order of integration and perform­
ing operations connected with t and r 1 we arrive 
at the expression 

k,r 
- s k 1 ( sinx cosx )V ____ _ 
t = "•;, '" 0r ~ ---x.-- -- -x- In k0r- In x dx, 

() 

where x = pr. If the optical distance k0r is suffi­
ciently small, then 

00 

t = 8o.-'l•,k0r Vln k0r \ ( sin.,~-~_:"__) dx. 
j X" X 
() 

After integrating, we obtain the final result 

(5.6) 
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Compare these with Holstein's calculated results 

- LV L - -i= 1.9"rk0 2 lnk0 T; t=l.hkoRVInk0R. (5.7) 

His first formula is for a planar layer, the second 
for a volume with cylindrical configuration. Hol­
stein's relations (5. 7) are in good agreement with 
experiment. 8 

Comparison of (5.6) and (5. 7) leads to the same 
results as obtained for a dispersion spectral line. 

6. CONCERNING STATIONARY SOLUTIONS 

Let a source of excited atoms act for an infi­
nitely long time at a certain point in space (r = 0 ). 
The distribution function f ( r) satisfies in this 
case the equation 

(6.1) 

Using, as previously, the Ambartsamyan and 
Fourier transformations, we find 

1 a r e-iprdp 
f (r) = - (21t)2r -Jf j a+'"" 1 [1- J (p)J ' (6.2) 

-en 

where the function J (p) is defined by Eq. (2. 7). 
Assume that there is no extinction and that the 

spectral line has a dispersion shape. Using (3.3) 
we arrive at the asymptotic expression 

f (r) .. ~ 3-c Y 1tk0r j2 (27t)2r 3 • 

The same result can be obtained by using the solu­
tion of Eq. (1.1) and the formula 

CX> 

f(r) = ~ f(r, t)dt. 
0 

In conclusion, I express deep gratitude to L. M. 
Biberman, who was in charge of this research. 
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