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AccORDING to the general idea of the nonlinear 
unified field theory, the entire set of elementary 
particles is constructed from one fundamental 
spinor field. Since, however, the spinor equation 
is taken to be nonlinear, the fields obtained for the 
other particles are also nonlinear. 

The relativistically-invariant equation for the 
elementary particles can, in the linear theory, be 
written in the well-known general form1 

(1) 

where r J-t is a matrix; in particular, if r J-t = YJ-t, 
we have the Dirac equation, if rll = {3/-t, the Duffin
Kemmer equation, etc. 

As was shown in reference 1, there exists a non
degenerate invariant form y = ( lf!*Tlf!) ( T is a ma
trix) for all finite-dimensional representations of 
the full Lorentz group. Hence, if we change k0 in 
(1) to C (y) = k0 + f (y ), we again obtain a relati
vistically invariant equation 

(2) 

which is now nonlinear. 
We arrive at an equation of this form, if, for 

example, all particles are "merged" into one field 
obeying the nonlinear generalization of the Dirac 
equation in conformity with group theory: 

(3) 

As in the linear theory, Eq. (3) is an irreducible 
representation D1j2 in the space of the basis vec
tors { 1/Jk } . By forming the product D1; 2 x D1j2 

from two spinor equations of form (3), we obtain 
then the irreducible representations D0 + D1 in 
the space of the basis vectors { 1/!i 1/!k } = { 1/!ik} . 
We write the resulting equation in the general 
form 

(~p. a I axil- + B (y)) cf = 0. (4) 

In reference 2 we determined the exact wave 

solutions of Eq. (3). The method developed there 
may, however, also be applied to the general equa
tion (2). Indeed, if we require a solution in the 
form 

cfa = Ua(s, 1)(1 ..• O(i• kfL)cp(a), a= k!J.Xp., u:ua = 1, 

k!J. = (kn, iw), w = sE, E = + 1, c = h = 1, (5) 

where E, C¥t. ••• , ai are parameters specifying 
the state of. the particles, Eq. (2) takes the form 

We further add the conjugate equation 

u (s, 1)(1 .•. ()(;, k!J.) (r ~'- ku. dcp• 1 da - C (p) cp") = 0. (7) 

If we now subject the functions cp( a) and 
cp* (a) to the system of equations (2.4) of refer
ence 2, we obtain for the amplitude 

(ir 11- k~'- +A) u = 0, u (if~'- k~'- +A) = 0. (8) 

cp (a) and cp* (a) were determined in reference 2. 
The solutions of (8) can be taken from the linear 
theory. In particular, in the case of equation ( 4), 
~here r J-t = {3/-t, we have ljj = lf!*T/4, T)4 = 2{3~- 1, 
C ( y) = C* ( y), with the solutions of equation (8) 
known from reference 3. 

On the other hand, if C (y) has a form such 
that the four-dimensional current is conserved, 

a - - d ax (cjlrp.cf) = (ur fL kp u) -d-;,- (cp• cp) = 0, (9) 
!'-

then cp*cp = const, or (urllkJ-tu) = -ll.(uu) = o. 
The unique complex solution cp (a) cp* (a) is 

given by (2.13) of reference 2. The real solution 
cp* = cp ""const leads to (urllkJ-tu) = -ll.(uu) = 0. 
These solutions were found in reference 2 with 
r J-t = YJ-t and the normalization u*u = 1. 

We further note that, since the equation for 
cp ( a) with given C ( y) has identical form for all 
r J-t = YJ-t, {3/-t, etc., the quadratic equation resulting 
from it also has the same form for all fields (just 
as the relativistic wave equation in the linear 
theory). 

I regard it as my obligation to express my deep 
gratitude to D. D. Ivanenko and G. A. Sokolik for a 
discussion of this paper. 
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