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It is shown that in an atomic explosion, which is accompanied by asymmetric emission of 
y quanta, radio waves are emitted due to the presence of a current in the ionized air. The 
duration of the oscillation in each half-wave is of the order of 10 p, sec. For a given asym
metry in emission of the y rays, the amplitude of the oscillations depends weakly on the 
total number of quanta. 

IT is known that atomic bomb blasts are accom
panied by characteristic radio signals which are 
recorded at distances of thousands and tens of 
thousands of kilometers. In propagating over such 
large distances the radio pulse spectrum becomes 
much more complex than the spectrum of the ini
tially emitted pulse .1 Only the latter spectrum will 
be studied in the present paper. This is the spec
trum which one can record at a distance of say one 
hundred kilometers from the point of the explosion. 
In other words, we shall try to determine the effec
tive radiator. 

G. M. Gandel'man and L. P. Feoktistov (private 
communication) have described how an electric 
field develops in the air under the action of the y 
quanta. The quanta give rise to Compton electrons 
which move preferentially forward, i.e., away from 
the point of the blast. But since the flux of quanta 
decreases approximately exponentially with distance 
from the blast origin, the numbers of negative 
charges which are transferred to points at different 
distances from the origin are different. This non
uniformity of the charge density results in the ap
pearance of an electric field. 

In moving along their paths, the Compton elec
trons produce a large number of secondary elec
trons, thus making the air conducting and producing 
a current which tends to annul the field. If the y 
quanta are emitted asymmetrically, the current 
radiates an electromagnetic pulse. But the dura
tion of the pulse due to the electronic current can 
be of the order of one or a few microseconds, which 
can give radiowaves in the meter wave length band. 
The longer wave length oscillations are of great 
interest. 

The cause of these oscillations has been given 
by 0. I. Leipunskii (private communication). The 
electrons attach themselves not to positive ions 

but mainly to neutral 0 2 molecules. The air 
acquires an ionic conductivity and a current in it 
lasts much longer than it does during the stage 
where the conduction is electronic. At the mo
ment when ionic conduction is established there 
is still an electric field in the air. 0. I. Lei pun
skii showed that the magnitude of this field is 
practically independent of the initial ionization at 
the given space point: if the ionization is greater, 
the initial space charge density is greater, but 
then so is the electronic conductivity of the air 
which causes the dissipation of this space charge. 
This same result is obtained in more rigorous 
form in the present paper. 

But if the field is independent of the initial ioni
zation, the initial asymmetry in emission of the 
quanta has no effect on it. Thus the field is purely 
radial and symmetric. An asymmetry arises be
cause of the ionic conduction of the air which is, 
of course, greater on the side toward which more 
quanta were emitted. As the later computations 
show, the asymmetric ionic current gives a pulse 
of reasonable order of magnitude and the expected 
duration. 

1. THE INITIAL FIELD 

Let the number of y quanta emerging from the 
blast origin per unit solid angle per unit time in a 
given direction be N0/47T. (The total number of 
emitted quanta will then be N0, where the aver
age is taken over all solid angle.) We denote the 
mean free path of the quanta by A., and the num
ber of secondary electrons per Compton electron 
by v. Then the number of free electrons which 
appear at distance r from the blast origin per 
unit time per unit volume is 

( 1) 
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We shall not treat effects related to multiple 
scattering of quanta since they are of secondary 
importance. 

If y is the pr9bability per unit time of attach
ment of an electron to a molecule and ne is the 
volume concentration of secondary electrons, then 
ne satisfies the differential equation 

(2) 

which has the integral 
I 

n, =' e-yl ~ J (t') exp (It') dt'. (3) 

The space charge density p is determined by 
the law of conservation of charge, which in the 
present case gives the equation 

up/ at =' - div o, E + po. (4) 

where E is the electric field, ae is the electronic 
conductivity of the air, which is considerably 
greater than its ionic conductivity so long as there 
are free electrons present, and Po is the rate of 
increase of the space charge density resulting 
from displacement of the Compton electrons 
through the air. 

We use l to denote the average radial compo
nent of the free path of the Compton electrons. Ob
viously, l « A.. Po is given by the difference be
tween the numbers of electrons leaving a given 
point and coming toward it, or 

Po= e [J (r)- .I (r + l)] I v. 

For points not too close to the origin, this gives 

Po ~-c Jle I 1-v. 

The Poisson equation gives 

divE= 41l'p. 

Substituting in Eq. (4), we find 

• r 1 aE . ) • d1v:-,- ·-at -t- o,E = Po· 
\ ·17t 

(5) 

(6) 

(7) 

We note that the diffusion current has been omitted 
since it is much smaller than the conduction cur
rent in the cases we are considering. 

As already stated, ae and Po depend on the 
angle. Nevertheless we shall show that at the in
stant of time in which we are interested the field 
has only a radial component. Thus the divergence 
operator on the right side of (6) actually contains 
only derivatives with respect to r: 

L a_,2 (-1- aE, -~- cr E)- P. 
r2 ar \ 47t at ' e r - 0 • (8) 

We impose the boundary condition Er(oo, t) = 0 

on Er. Integrating Eq. (8) subject to this condition, 
and using Eqs. (5) and (1), we get 

aE,!dt _L 4r.cr,E, =- (Jii0elf'Ar2)exp(-- r /f...). (9) 

Then 
I I 

E, = ---- (el j r2 f...) e-'1" ~ exp {--- 41l' ~ o, (t") dt"} N0 (t') dt'. 
o I' 

(10) 

As already stated, ae is the electronic conductiv
ity of the air. Denoting the electron mobility by 
the symbol we, we get [cf. Eq. (3)]: 

(11) 

A double integral of ae with respect to the time 
appean; in the expression for Er. This can be 
reduced to a single integral, giving 

t t 

41l' ~ credt" = e::: e-r/1.+ [ ~ N0 (t") (1- exp {I (t"- t)})dt" 
t' 0 

t' (12) 
-~ N0 (t")(l-exp{l(t"-t')})dt"]. 

0 

To find Er we must assign the time dependence 
of N0• We can say the following about the shape of 
this time dependence. Initially, while the chain re
action is still developing, N0 ( t) increases very 
rapidly. After reaching a maximum, N0 ( t) de
creases, but at a rate much slower than its rate 
of rise. 

We may assume the dependence 

N0 (t) =A exp {- ~t}. (13) 

As we shall see from the later calculations the 
field Er is extremely insensitive to the value of 
{3 so long as the inequality 

(14) 

is satisfied. 1/y, the time for attachment of an 
electron to a molecule, is approximately 4 x 10-7 

sec ( cf. reference 2), while 1/ {3 is larger than 
this, which is the basis for the inequality (14). 

We substitute the time dependence (13) in for
mula (12) and carry out the integration, giving 

E = _!}__ e-r/). 
r l.r" 

{ ewevexp(-r/I.)[A Ayexp(-~1) + Aexp(-yl)]} 
Xexp- r"'Ay lf-· ~\Y-~) y-~ 

t 

x ~ Ae-flt' dt' exp 
0 

(15) 

{ ew_->J exp (- r I 1.) [~ _ Ay exp (-~I')+ A exp (- yi) ]} . 
X r"l.y ~ ~ \Y- ~) Y- ~ 
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The exponential in this equation contains the 
quantity 

ew,Av exp (- r I)..) I /,r 2p (r- p) 

in its argument. Setting A/ (3 equal to the total 
number of quanta, which is say 1022 , the number 
v of secondary electrons per y quantum "'3 x 104, 

r ...... A. "' 3 x 104 em, We "' 2.5 x 106 cgs units, we 
find that the order of magnitude of the expression 
in the exponent is 4 x 103, i.e., it is very large. 
Consequently the main contribution to the integral 
(15) comes from large values of t', when the func
tion exp (- (3t') is smallest, since it appears with 
a negative sign in the integral. (This is also the 
reason why the stage of increase in number of 
quanta is unimportant). This statement is valid 
if the inequality (14) is satisfied,,i.e., if the ex
ponential exp (- yt') is smaller than exp (- {3t'). 
Then the exponential exp (- yt') has no effect on 
the value of the integral and drops out of the final 
expression for Er, if t is not too small. The 
result of the integration is 

E, = E = (r-- p) ljw,~. (16) 

A similar result was obtained by 0. I. Leipunskii. 
Thus the total number of y quanta and their 

angular distribution actually are not .affected by 
the magnitude of the residual field, so long as 
A/ (3 is sufficiently large. But this is practically 
always the case. 

E denotes the radial field. It does not go to 
zero at the origin. Consequently the charge den
sity has a singularity at the origin: 

o = _1 _ _ a_ r2£ = !:__ 
. 4r.:r2 ar 2r.:r • 

But this singularity does not contribute anything 
to the total charge, since p is multiplied by r 2 dr 
when we integrate over the volume. The appear
ance of such a singularity is entirely reasonable 
physically, since J ( r, t) has a singularity at the 
origin. A numerical calculation gives a value for 
E of order of magnitude 2 v/cm. 

2. ELECTROMAGNETIC OSCILLATIONS 

The time of development of the initial field is of 
order of magnitude 1/ (3, which may be assumed to 
be about one microsecond. The period of the elec
tromagnetic oscillations is approximately ten times 
as large. Thus the whole process can be divided 
into two stages: the first stage is the development 
of the field considered in the preceding section, 
and the second is the damping of the oscillations 
produced by the field. 

In the second stage, the conductivity of the air 
is ionic. Consequently the damping of the oscilla
tions is much less than it would be for the case of 
electronic conductivity. 

The number of ions decreases continually as a 
result of recombination. The recombination proc
ess must be taken into account along with the ionic 
conductivity, because the recombination coefficient 
is related to the ion mobility by the formula (cf. 
reference 2) 

(17) 

This formula is in satisfactory agreement with ex
periment for air at normal density. 

We shall now find the expression for the ionic 
conductivity of the air as a function of coordinates 
and time. For the density of ions of one sign we 
have dn/ dt = - bn2, so that 

n=1/(bt+1lno)· (18) 

Here n0 is the initial number of ions per cc. Con
sidering that there is only a slight angular depend
ence of the emission of quanta, we write 

II """ J /[ bt + (l + ; COS il) {fl,,/. 

Limiting ourselves to terms of first order in .; , 
we get the following expression for the electrical 
conductivity: 

In this formula, n0 is defined by the equation 

no = (Av / 47tpA3 ) !-'·(rIA), (20) 

where 

(21) 

Thus at the initial instant the field is radially 
symmetric and is given by Eq. (16), while the elec
tric field depends on angle. Consequently the cur
rent will have a corresponding asymmetry. 

The electrical conductivity leads to a falloff of 
the initial field with time. Keeping only the term 
with o-0, we have 

iJEor I at+ 4rc:;oEor = 0, (22) 

where the index 0 on Eor is a reminder that in 
this approximation the field is assumed to be cen
trally symmetric. Integrating (22) we find, by 
making use of (18): 

l 

£ 0, = E exp {- ~ 4T::;odt'} 
0 

{ 4r.:ew - t} 
= E e,xp - -b- In (b + 1 /no) !0 • 

(23) 
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If we took Eq. (17) literally, we should replace 
the coefficient of the logarithm by unity. We shall 
however set 

4rrew f b __ r:t., (24) 

where a can be determined from experimental 
data. Thus 

Eor = E (btn0 + !)-". (25) 

The effect of recombination is to give a power law 
for the damping instead of an exponential law which 
one would get if the ion concentration were constant 
in time. The quantity a 1 cos J., which was assumed 
to be small, will be multiplied by Eor• which gives 
an inhomogeneous term in Maxwell's equations 
and gives rise to an asymmetric current. The 
assumption that the asymmetry is small was of 
course made only for computational reasons. If 
we assumed arbitrarily large asymmetry, we 
would have to perform numerical integration of 
the Maxwell equations with respect to three inde
pendent variables (radius, angle, and time), which 
is immeasurably more difficult than the (also nu
merical) determination of quantities which depend 
only on the radius and the time. 

We shall write the Maxwell equations in the 
form 

1 H _ 1 aE + 4rru E cur -cat -c- ' 

curl E = - _!_ aH 
c at 

divH = 0. 

(26) 

(27) 

(28) 

As usual for conducting media, we need not write 
the equation for div E, since it follows from (26). 

We look for a solution of the system (26) to (28) 
in the form 

Er = Eor + £ 1 cos&, E& = £ 2 sin&, E'~' = 0; 

Hr=H&=O, H'~'=Hsin&. 

When this form is substituted in the Maxwell equa
tions, the angular dependence separates off, and we 
get a system of equations for Et. E2, and H. 

We introduce the following dimensionless vari
ables: 

x=rn, ·y~=ctjf., H=~EH', £1=~££1, 

£ 2 = ~££2 • m = (e<.olv ( r:t.A."c) A j ~-

Then the final system of equations which is to be 
integrated numerically has the form* 

l.H' aE~ . mal-' (x) E~ . mal-' (x) ----- = -- -+- - -r- . 
X ay ' In!-' (X) y -t-1 (ml-' (x) y + 1)2;-a (29) 

*If the asymmetry of the emission of quanta is quadrupole, 
with the shape ~ (3 cos2 D - 1)/2, there will be a coefficient of 
3 before the E,' in (31). 

O.J 

0.1 

JO • 

\ 

*Values of parameters: 1) ex.= 4, m = 200; 2) ex.= 1, m =10; 
3)_ ex.= 1, m = 1. 

t a ( ') aE~ ma11- (x) E~ 
--x7ix xH = 7ii} -f-ml-'-(x)y-t-1' 

(30) 

1 ( a · '\ aw - ·a··- (x£2) + El) = ---x x ay , (31) 

where f:.t ( x) is given by (21). 
The initial condition on H', Ei and E2 is that 

all three are zero for t = 0. 
From symmetry considerations, the electric 

field at r = 0 must be along the line from which 
the angle J. is measured. This gives 

E~ (0, t) + £~ (0, t) = 0. (32) 

The magnetic field at the origin must be equal to 
zero: 

H' (0, t) = 0. (33) 

We now consider the question of radiation of 
electromagnetic waves. At a large distance from 
the point of the blast, where the function f:.t ( x) 
may be assumed to be equal to zero, we can make 
the substitution 

; =..!._a__ (x2H') (34) 
• X ax 

and reduce the system (29) to (31) to the wave 
equation 

whose solution we write as t = T ( x- y). The 
field is given in terms of the function f by the 
formulas 

(35) 

(36) 

Thus the function f determines the effective radi
ating dipole. It is determined by integrating the 
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system numerically along the characteristic x = y 
out to the region where J.l (x) = 0. The results of 
the integration are given in the figure for three 
cases. The ordinate is the function f ( x-y ) and 
the abscissa is the quantity y- x + 10. As we see, 
the signal amplitude depends approximately loga
rithmically on the value of m, i.e., on the total 
number of quanta. The signal duration has approx
imately the same dependence. The latter result 
seems very natural, since the wave length is com
parable with the dimensions of the ionized region, 
which depend logarithmically on the number of 
quanta. 

In conclusion, .I express my gratitude to 0. I. 
Leipunskii who pointed out the role of the ionic 
conductivity of the air in the production of the 

radio signal and stimulated the present work by 
numerous discussions. The analysis of the equa
tions and the necessary computations for the pres
ent problem were done by A. A. Miliutin, S. L. 
Kamenomostskaia, and V. I. Kozhevnikov, to whom 
I express my deep indebtedness. I thank A. A. 
Dorodnitsyn and M. V. Keldysh for providing the 
computing machines. 
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