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We discuss the idea of constructing a "table of random stars" which could reproduce, in a 
form suitable for comparison with experiment, theoretical concepts concerning the multiple 
production of elementary particles. It is shown possible to construct such a table for ener­
gies up to 10 Bev. 

MosT papers on the theory of multiple particle 
production are devoted to the solution of two prob­
lems. The first is the determination of the statis­
tical weights of the various different reactions, 
and the second is the determination of the mom en­
tum distributions. Ordinarily one does not discuss 
the question of angular correlations or of other cor­
relations between the directions and velocities of 
the secondary particles. Yet the solution of this 
question would allow one to reach more definite 
conclusions on the applicability of the theory to 
the process of multiple production. Indeed, corre­
lations between the directions of the particles must 
depend on the nature of the interaction between the 
particles at the time they are produced. Thus in 
Fermi's original statistical model of independent 
secondary particles, the correlations should de­
pend only on restrictions due to the conservation 
laws, while according to the presently accepted 
ideas of a resonance interaction between the nu­
cleon and meson, the correlation should be stronger. 

A qualitative estimate of the "forward-backward" 
correlation was already given by Fermi1 from con­
siderations of angular-momentum conservation. 
The difficulty in obtaining quantitative results lies 
in the very complicated calculations necessary. 
But even if these calculations could be carried out 
with very simple assumptions, the complication in 
the form of the interaction matrix (the natural 
way to proceed with the theory) would present 
new difficulties. In view of these conditions, an 
obvious way out would be to establish a model for 
multiple particle production. But since our ideas 
as to the mechanism for multiple production are 
still too cloudy for us to find am.ong large-scale 
processes one with the appropriate regularities, 
we may make use of a numerical model. Such a 
model should be capable of reproducing a large 
class of physical assumptions on the form of the 
interaction. 
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M. I. Podgoretskii and M. Ia. Danysh (in a pri­
vate communication) have suggested the idea for 
such a model in the form of a "table of random 
stars" for the isobaric model. The essence of 
their proposal is to construct a table of random 
variables which satisfy the same laws as the mo­
menta of the secondary particles as predicted by 
the isobaric model. The table of random stars 
should contain a series of entries each of which 
represents one case of particle production, i.e., 
contains the magnitudes and directions of the in­
dividual secondary-particle momenta. The statis­
tical analysis of such a table will give the same 
kind of information on the multiple-production 
process (statistical weights, momentum distribu­
tions, angles, charges, etc.) as will the analysis 
of actual stars in photographic emulsions or cham­
bers. 

The distributions or correlations which one is 
able to obtain from stars, say, in a hydrogen cham­
ber, can be duplicated on the corresponding table. 
A shortcoming of the method is the low accuracy 
obtained from a small table, the large amount of 
calculation necessary to construct and analyze the 
table, and the impossibility of obtaining analytic 
expressions for the results. 

It is shown in the present work how this idea 
can be realized using an electronic computer. It 
is possible, however, to construct a table contain­
ing 100 or 200 lines with some simplifying assump­
tions for five or six secondary particles by our 
method without resort to machines. 

Our method takes into account energy and mo­
mentum conservation in the reaction. It can be 
generalized to a relatively wide class of concepts 
concerning the interaction of particles in multiple 
production. For this reason we are able to answer 
affirmatively the question of whether it is possible 
to construct a model for multiple production more 
accurately than it is possible to test numerically 
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any particular physical model for multiple produc­
tion. 

1. TABLE OF THREE.:..PARTICLE REACTIONS 

Consider the reaction of two particles with total 
energy E and zero momentum, resulting in the 
production of three particles with masses mi, mo­
menta Pi. and total energy ei (with i = 1, 2, 3 ). 
According to Fermi's theory, the probability for 
this reaction is proportional to 

3 3 

W(E) = ~d3pld3p2d3p31l(~e;- E)o(~P;). (1.1) 
1 1 

The product of {j -functions represents the momen­
tum distribution density in nine-dimensional mo­
mentum space, and the entire problem of construct­
ing a model lies just in achieving such a distribution. 
But the narrow bands along the intersections of the 
::Eei- E = 0 and !:pi= 0 surfaces of the nine-di­
mensional rectangle have too small a volume for 
the randomly chosen points with coordinates Pi 
to fall sufficiently often into these bands. On the 
other hand the integral 

W (E) = 81t2 ~ P1P2 (E- e1- e2) dp1dP2• (1.2) 
D, 

obtained from (1.1) by simple operations, can be 
used to achieve the necessary momentum distribu­
tion. In this integral the region of integration D3 

- Pz 
Pzma ;,.,.,.""'-------, 

FIG. 1 

(Fig. 1) is bounded by the curves cos (} = ± 1 
(where (} is the angle between p1 and P2 ) . The 
equations of these curves are 

(1.3) 

where 

(1.4) 

It follows from (1.2) that the joint probability that 
the momentum p1 lies in the interval dp1 and p2 
lies in the interval dP:! is distributed with a den­
sity (which is thus also the density of points 
M (Pt. p2) in D3 ) proportional to the function 

(1.5) 

According to (1.5) the points M are not uni­
formly distributed in D3• There are two ways of 

obtaining random variables a distributed in (a, b) 
with density f (a). These are (a) the rejection 
method and (b) the "direct" method.2 The two­
dimensional distribution of (1.5) is conveniently 
obtained by the "rejection method". To do this 
one must know the maximum of W (Pto p2) on 
D3. It is easily shown that the values of p1,2, 
which we shall call Pi,2, for which this maximum 
is attained are the roots of the set of equations 

PV e1 = p:J e2 = E- e1- e2, (1.6) 

if they iie within D3. If they do not, then Pi 2 lie 
' on the boundary of D3 (the curve E- = 0) and 

satisfy the set of equations 

Ps (E- e1-e2 -(p~ I e1)] 

P1 [E- e1- es- (p~ I es)] 

For high values of the energy E, it is (1.6) which 
must be solved, while for low ones, it is (1. 7). 

A pair of numbers Pto p2 determines the mo­
menta of all three particles in magnitude and direc­
tion. Therefore the procedure for obtaining a single 
entry in the table of three-particle stars correspond­
ing to Fermi's model is the following. 

1. The random variables Pi and p2 are picked 
uniformly in the intervals ( 0, Pimax) and 
(0, P2max>·* Here 

P1max = {[£2- (ml + m2 + ms)2] 

X [£2 - (m1- m2- ma)2]}'/• / 2E, 

with a similar expression for P'2max. 

(1.8) 

2. One must check that ( Pto p2 ) is a point in D3. 

The easiest way to do this is to verify that 

(1.9) 

If these inequaiities are fulfilled, one can always 
find an angle (} between Pi and p2 such that 

e1 + e2 + [(pl + P2)2 + m:f'• = E. (1.10) 

If (1.10) is not fulfilled, however, ( Pto p2) is 
rejected and a new pair is picked. 

3. The random variable {:J is picked uniformly 
in the interval ( 0, Wmax = w (Pt. p2)) and the in­
equality 

(1.11) 

is checked. If this inequality is not fulfilled, the 
(Pt. P2) pair is rejected. 

4. If (1.11) is fulfilled, (1.10) is used to calcu­
late 

cos 3- = (p:- p~- p~) /2P1P2· (1.12) 

The momenta of the three particles can now be 

*The terminology is explained elsewhere. 2•3 
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taken as 
P1 = {P1 cos~. - P1 sin~. 0}, 

P2 = {p2cos(&-~). p2 sin(&-~). 0}, 

Pa = -PI-P2• 
(1.13) 

where 1/! is a random angle uniformly distributed 
in (0,211"). 

A table in which each line is calculated from 
(1.13) will be a table of plane stars. This means 
that in analyzing an experiment one must reduce 
all the three-particle stars to a single plane be­
fore comparing the experimental and the tabulated 
statistics. To obtain a table of three-particle stars 
not restricted to a single plane, what is necessary, 
obviously, is to allow the end point of the unit nor­
mal to the (Ph p2, p3 ) plane to be uniformly dis­
tributed over the unit sphere. 

In the next section we give a method for trans­
forming plane stars to stars uniformly distributed 
in three-space. We also evaluate in this section 
the efficiency with which our method yields stars. 

2. TABLE OF REACTIONS WITH n SECONDARY 
PARTICLES 

General case. Consider the case in which n 
secondary particles are formed in the interaction, 
the square of the interaction matrix element 
F ( P1, ... , Pn ) being a function which remains 
bounded everywhere. This function F can also 
depend on the energy E and on the parameters 
of the initial particles, but in our discussion such 
dependence is of no import. The momentum part 
of the expression for the statistical weight is of 
the form 

W (E, P) = ~ d3P1· .. d3pnF (P1• ... , Pn) o 
n n 

x(~e1 -E)8(~p1 -P), 
1 1 

(2.1) 

where P is the total momentum of the system. 
The region of integration over the first ( k - 1) 
momenta will be denoted by Dk, and the other 
momenta Pk •... , Pn are not restricted in any 
way except in so far as they are involved in the 
conservation laws. Let us denote by dk the re­
gion of integration over Pk for fixed Ph ... , Pk-l 
and arbitrary (except for the conservation laws ) 
Pk+io ...• Pn· We shall introduce the following spe­
cial notation for the energies and momenta of par­
ticles k, ... , n when the momenta of particles 
1, ... , k -1 are fixed: 

k-1 

Pk = ~ p1 -P; (2.2) 
1 

we also denote the characteristic ("maximum") 

energy and momentum of particle k in the center­
of-mass system of particles k, ... , n for fixed 
values of Ph ... , Pk-1 by 

E~=(M~+m~·-·p..~)/2 M,.(k= 1, ... , n-1), 

E~ = (M~-1- m~-l + m~) I 2Mn-lo 

PZ = (£;2 - m~)'l• 

={(M~- m~- p..~)- (2m,.p..k)2}''• I 2M", 
(2.3) 

where Mk is the effective mass of the system of 
particles k, ... , n, and J..!k is the mass of the 
compound particle composed of particles k + 1, ... , n, 
i.e., 

n 

(2.4) 

We shall specify Pk by its spherical coordinates 
Pk = {pk, Bk, cpk} in a system fixed with respect to 
the sum of the P1o ... , Pk-1> momenta which have 
already been picked. We take the polar axis along 
the Pk direction, Bk to be the angle between Pk 
and Pk, and calculate cpk from the vertical plane 
containing Pk (Fig. 2). This coordinate system is 
convenient in that the magnitude of Pk + Pk is in­
dependent of cpk ; indeed, 

p~+1 = p~ + P~ + 2P kpk cos &k. (2.5) 

z 

X 

FIG. 2 

~+I 

I' 

The Cartesian coordinates of the momentum (see 
Fig. 2) are given by 

R.k = (X~+ Y~)'1•; (2.6) 

(2.7) 

Let us now.rewrite (2.1). Integrating over Pn 
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and Bn-1> we eliminate the 6 -functions in the in­
tegrand, obtaining 

W (£' P) = ~ d3P1·' 'd3pn-2dpn-1dt'n-1Pn-1 :n 
n-1 (2.8) 

X F (PI>· · · ,pn-1,-P n-1- Pn-1), 

where Pn-t is the vector whose components are 

{ -1 E~ -m~- P~-1- P;._1 } 
Pn-1 = Pn-1' COS 2P p ' Yn-I ' 

n-1 n-1 ( 2.9) 

and the region Dn of integration is bounded by the 
surfaces cos Bn-i = ± 1, i.e., 

(2 .10) 

Now (2.8) can in principle be used to solve the prob­
lem of achieving the distribution associated with the 
model whose interaction is given by F. There are 
no dependent variables of integration in (2.8), so 
that the sets of values of Pto ... , Pn-2• Pn-to <Pn-1 
must satis'fy certain inequalities rather than equa­
tions (as is the case for (2.1)), and this increases 
greatly the efficiency of drawing. However the 
amount of calculation necessary to obtain a distri­
bution over Pto ... , Pn-2, Pn-i• <Pn-i with density 
Pn-iEnF/Pn-i is still extremely large. All fur­
ther operations should be directed toward decreas­
ing the amount of calculation. An obvious way to 
do this is to perform as many integrations as pos­
sible in (2.8), since this reduces the dimensional-· 
ity of the region of integration and thus increases 
the ratio between the volume of this region and the 
volume of the rectangle under consideration. This 
goal is not, however, possible to achieve in general 
with arbitrary forms of F. Since we wish to de­
velop a method suitable for all F, we shall pro­
ceed to reduce the amount of calculations in a dif­
ferent way. We write d3pk in the form p~dpk x 
dcos Bkd<Pk, making use of the spherical coordi­
nate system described above. Then the density of 
distribution over Pi• cos Bto <Pi; p2, ... ; 
· · ·, <Pn-2; Pn-1> <Pn-i will be of the form 

(2 .11) 

where the arguments of F are the same as in (2.8). 
The essential result is that the regions D2, ... , Dk, 
... , Dn for the solved values Pi; Pto P2; ... ; Pi• P2, 
· · ·, Pk-i; ... ; Pto ... , Pn-i are independent of 
<Pto ... , <Pn-i· We proceed to prove this assertion. 

Let the momenta Pi, ... ,Pk-i (where k :s 
n- 2) be fixed. Let us find the region of variation 
dk of the momentum Pk· The remaining k, k + 1, 
... , n particles fulfill the relations 

n n 

L;P; = -Pk. (2.12) 
k 

It is known4 that if in multiple production one par­
ticle has its maximum possible momentum, then 
all the other secondary particles move as a whole, 
i.e., as a particle whose mass is equal to the sum 
of the masses. For particle k this mass is J.Lk 
[see (2.4)). The conservation laws for two particles 
with masses mk and J.Lk, total energy Ek and 
momentum - Pk can be written in the form 

(p~ + m~f 1 ' + {(- Pk- Pk) 2 + fLV'" = Ek. 

This is the equation of the surface which bounds 
the region dk of possible positions of the end 
points of Pk· The location and shape of dk is 
most clearly found by a graphical representation 
of the conservation laws.5 On going from the 
center-of-mass system to the laboratory system, 
the Pk = const sphere is deformed into an ellip­
soid of revolution prolate along the direction of 
relative motion of the two coordinate systems. In 
the case we are considering the center of the el­
lipsoid lies at 0 (whose position vector is 
-EkPk/Mk), the major axis (the axis of revolu­
tion) is of length 2pkEk/Mk and is directed 
along Pk, and the minor semiaxis is of length 
Pk (Fig. 3). Here Ek and Pk are given by (2.3). 

FIG. 3 

We can now find the region Dk. Since .the en­
ergy Ek of particle k in the center-of-mass 
system of particles k, k + 1, ... , n is no less than 
its mass mk, it follows that [see (2.3)) 

(2.13) 

This is not only a necessary condition on Pto ... , 
Pk-i• but also a sufficient one. That is, when it is 
fulfilled there always exist Pk, ... , Pn such that 
the conservation laws will be fulfilled; for instance, 
particles k + 1, ... , n may all be moving in the 
same direction ( in the coordinate system in which 
Pk = 0), while particle k moves in the opposite 
direction. 

But Mk depends only on the magnitude of Pko 
as indicated by (2.4}, and this in turn is independ­
ent of <Pk [see (2.5)). Therefore the shape of Dk 
as given by (2 .3) is independent of <Pk (for k :s 
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n -1). For Dn this follows from (2 .10). 
The fact that the shape of Dk is independent 

of <Pk for all k from 1 to n makes it possible 
to decrease the dimensionality of each Dk by a 
factor of %; thus, for instance, the dimensional­
ity of Dn will be 2 ( n- 1 ) instead of 3 ( n - 1 ) . 
This, in turn, greatly increases the ratio between 
the volume of Dn and the volume of our rectangle 
of the same number of dimensions. 

Thus we can use the following procedure for 
obtaining n -particle reactions for an interaction 
the square of whose matrix element is F. First 
P1 and cos 81 are picked from a uniform distri­
bution in ( P1 min. P1 max) and ( - 1, 1 ) ; then p2 
and cos 82 are picked from (P2min• P'2max) and 
( -1, 1 ), and (2.13) is checked with k = 3; ... ; 
~en Pk and cos 8k are picked from* (Pkmin• 
Pk max) and ( - 1, 1 ) , E k+t is calculated from 
(2.2), and Pk+1 from (2.5), and (2.13) is verified. 
If it is not fulfilled, we pick again from p1, while 
if it is, we proceed to k + 1, etc., up to k = n -1. 
For k = n- 1 only Pn-1 is picked, within the lim­
its I E~-1 P~-1 'f P~-1 En~1I/Mn-1 (but not between 
Pn-1min and Pn-1max!), and (2.13) need not be 
verified. Only now are <Pt. ... , <Pn-1 picked from 
(0, 27T), value of cos 8n_1 calculated by (2.9), and 
the value of <I> (p11 ••• , <Pn-1) calculated by (2.11). 

The use of the rejection method to obtain the 
distribution with density <I> has its peculiarities in 
the present case. It cannot be used by rote, since 
if F is everywhere finite, <I>max = oo when Pn_1 
= 0. But it is just in the limit Pn_1- 0 that the 
interval of variation of Pn-1 contracts to a point, 
so that Pn -1 is uniquely specified and need not be 
picked. 

After obtaining the distribution with density <I>, 
the construction of the table is completed by calcu­
lating Pn = Pn-1 - Pn_1 and writing all the mo­
menta in the cartesian XYZ system using Eqs. 
(2.6) and (2.7). 

Fermi's model ( F = 1) allows some simplifi­
cation of the method of computation. In this case 
it is possible to carry out the integration over 
<Pn-1 and Pn-1 in (2.8), or more accurately over 
en-1 between the limits 

e · - (£* E + * P ) I M rnm - n-1 n-1 Pn-1 n-1 n-l' 
max 

(2.14) 

and to obtain the distribution densityt 

*For n = 3, Eq. (2.15) becomes the same as Block's6 
Eq. (4) . 

. tThe values of Pkmin and Pkmax are calculated by for­
mulas similar to (1.8). 

(2.15) 

The sequence of picking is here the same as in the 
general case, but ends with the picking of Pn-2 and 
cos 8n_2 . Having obtained uniformly distributed 
points in Dn-t. one obtains a nonuniform distribu­
tion with density <I>' by the rejection method. In 
addition, <I>~ax can be calculated beforehand; it 
can be shown, namely, that the maximum value of 
<I>' is obtained when Pn-1 = 0 and the values of 
Pt> ... , Pn-2 satisfy the set of equations 

P~ _ P~ P~-2 
·--- --=. 0 .-= 
e, 

(E• E*)2 *2 ( *2 • • *2 • (2 16) 
n-l n + Pn-l En-l-En-lEn + En ) • 

These equations are easily solved by an iteration 
method. 

We must still pick the momentum Pn-1. Instead, 
it is better to pick the energy en_1 by the "direct" 
method, i.e., to solve the equation 

2e~_,- 3En-le~-l = (2e~;n- 3En_1e;;,;n) (1 - 01:) 
(2 3 2 (2.17) + Cmax- 3En-lCmax) 01:, 

where a is uniformly distributed over ( 0, 1). 
Only after this has been done does it make sense 
to pick <Pt. ... , <Pn-1 . 

A characteristic feature of the methods de­
scribed in Sees. 1 and 2 is the occurrence of un­
successful pickings, which means that the uniform 
distributions are obtained by rejection. It is obvi­
ous that if there are too many unsuccessful pickings, 
this method for constructing the table becomes prac­
tically useless. It is impossible to evaluate the ef­
ficiency of this method in general. A numerical ex­
periment has shown, however, that for meson pro­
duction by 10-Bev protons, the method is fifty 
percent efficient (for production of one 7T meson) 
and ten percent efficient (for two 7T mesons). 
For more mesons, the efficiency is too low for the 
method to be usable by hand calculation. Neverthe­
less, it is possible to construct a table for produc­
tion of 3 or 4 mesons by hand if one integrates <I>' 
several more times. The use of an electronic com­
puter makes it possible to construct large tables 
for 5 or 6-particle reactions by our method. 

3. THE TABLE OF RANDOM STARS 

It is difficult to compare an n -particle table 
with experiment, since experiment does not ob­
serve neutral particles. Such a table must enter 
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as a component part into a table of random stars 
formed by the collision of two given particles for 
a given energy E. To form such a table one must 
consider all forms of reactions which have observ­
able statistical weight. The statistical weight of a 
reaction determines the average number of entries 
corresponding to it. 

Although in Fermi's model the statistical weights 
can be calculated and are already known for many 
reactions, this is not true for a reaction with an 
arbitrary value of F ( p1, ... , Pn); it may turn out 
to be no less difficult to calculate the statistical 
weight for such a model than it is to construct the 
table of random stars. The above method for con­
structing the table of n -particle reactions, how­
ever, can in principle be used to determine the vol­
ume W in phase space, the fundamental part of the 
expression for the statistical weight. Indeed, it is 
clear that W is equal to the product of the volume 
of Dn by the average value of <I> as given by (2.11) 
over this region. But the volume of Dn is equal to 
the fraction of successful drawings of Pto ... , Pn-t 
in this volume multiplied by the volume of the rec­
tangle of known dimensions circumscribed about 
Dn. In actuality, the use of this method to calcu­
late the volume in phase space requires a very 
large number of drawings, because the <I> values 
are so widely scattered; the smaller the volume 
of phase space, the greater the number of drawings 
required. 

But if all the statistical weights of the most im­
portant reactions which take place at a given energy 
are known, there is no great difficulty involved in 
constructing the table of random stars. We ar­
range all the reactions Nto N2, ••• , Nj, ... in an 
arbitrary order, and with each we associate an in­
terval oj on the segment ( 0, 1 ), such that the 
length of oj is proportional to the weight of Nj. 
Then in calculating an entry in the table, one 
chooses a random point on ( 0, 1). The index of 
the Oj interval in which this point lies gives the 
reaction Nj which is represented by this entry. 
One finds (if necessary), again by drawing, which 
of the momenta in this entry are to belong to 
charged particles. The momenta of the other par­
ticles, since they are not observed, need not be in­
cluded in the entry. 

In a table constructed in this way, (a) there­
actions will be randomly shuffled, and (b) the num­
ber of entries referring to each reaction will flue­
tuate in accordance with their statistical weights. 
These statistical fluctuations will obey the same 
laws as in the observation of actual stars. On the 
other hand, one may wish to increase the accuracy 
of small tables by forbidding such fluctuations. 

Using a computer giving stars with n = 6, this 
method can take into account most reactions in­
volving protons with kinetic energies up to 10 Bev. 
This will give rise to stars with varying numbers 
of prongs. 

The accuracy of the results obtained from a 
table of random stars depends on essentially the 
same factors as in the case of real stars. Errors 
in the determination of the energy and angles of 
emission of the particles do not occur; one may 
drop the fluctuations of the frequency of occurrence 
of the various reactions about the statistical weights; 
the results will, however, be affected by the error 
in calculating the statistical weights themselves. 
If the errors in the weights are of the order of 
ten percent, it is hardly worth having tables of 
more than one thousand entries. The allowed mar­
gin of error is necessary to obtain nominal distri­
butions and to compare distributions for different 
energies. The errors in the statistical weights for 
different E cancel, since they are more or less 
systematic, and thus comparison of the distribu­
tions for different E can be very accurate. 

An interesting possibility is that of increasing 
the accuracy by constructing the table of random 
stars in the laboratory coordinate sys~em. It is 
then no longer necessary to transform the actual 
stars into the center-of-mass system, an opera­
tion which can be handled only very roughly for 
high energies. This simplifies the analysis of the 
experimental data and increases the accuracy with 
which the table of random stars can be compared 
with experiment. 

CONCLUSION 

The purpose of this paper was to clarify the 
possibility of constructing a table of random stars. 
A method for such a construction has been given. 
It is first of all possible, clearly, to represent 
Fermi's model and the isobaric model in the form 
of tables. One may hope that modern computers 
are entirely able to reproduce reactions with 6 or 
7 secondary particles, which means that it should 
be possible to construct tables of the stars obtained 
in proton-proton collisions in a 10-Bev accelerator. 

The method for constructing the table for these 
models will give an isotropic angular distribution 
for the reaction products. In order to explain the 
actually observed nonisotropic distributions, it is 
necessary to give the appropriate momentum and 
angular dependence of the square of the matrix 
element F. 

Our method for constructing the table of ran­
dom stars is applicable to different forms of F. 
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The fact that F may be a complicated functions 
plays no role, since most of the operating time 
of the computer is spent, in our method, in re­
jecting the unsuccessfully picked momentum com­
ponents, rather than performing operations with 
the successfully picked momenta. 

It thus becomes possible to find a phenomeno­
logically satisfactory description of the interac­
tion by testing various hypotheses and comparing 
the statistical weights so obtained, the distribu­
tions, and the correlations with the experimental 
data. The same kind of an approach can be used 
to study the decay of unstable particles. 

This work was undertaken at the suggestion of 
M. I. Podgoretskii, and the author takes this oppor­
tunity to offer him his sincere gratitude. The au­
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